©CONOUAWNE

BMDFM FAQ

(“A LittleBoy and HisBMDFM”)

“ And now, let's plunge into a dense fog!” :

. Why isthe true multi-process model used in BMDFM additionally to multithreading?
. Where do you see version/build/revision of BMDFM ?

How do you solve termcap issues?

How do you change the default shared memory and semaphore limitson Linux?

How do you find out whether the OSisableto provide enough semaphoresfor BMDFM ?
How do you start the BMDFM Server detached from a terminal and control it later?

. How do you start many instances of BMDFM on the same machine?

. How do you get alist of recognizable parametersfor the BMDFM configuration profile?

. Where can it be necessary to change the mounting addr ess of the shared memory segment?
. Isthere any difference between a memory descriptor and a memory address?

. How doesBMDFM handle stringsinternally?

. Why use USER_10?

. How do you implement termcap via USER_10?

. How do you evaluate the VM language expr essions from C/C++ code?

. How do you allocate/free shared memory from C/C++ code?

. How do you attach to the BMDFM shared memory and allocate per manent data there?

. What isthe optimal number of the BMDFM processes?

. How do you implement a parallel recursive Fibonacci function?

. How do you rewrite application example from the BMDFM manual in pure VM language?
. How do you enable parallel reduction operation?

. How do you find out runtime error location in expression typed on BMDFM Server console?
. How seriousisthe performance degradation of pure unparalleled VM byte code?

. How doesthe relaxed consistency model of shared memory influence BMDFM?

. How doesthe BMDFM dataflow engine process an array?

. How do you enable late binding for a precompiled program?

. How do you fix unresolved dependenciesintroduced by vendor's proprietary compiler?

. How do you build fastlisp.exe with MSV Slinking against cygwinl.dll?

. How do you start BMDFM on Windows with Cygwin?

. Why cannot sem_maxval be determined for POSI X sema4?

. How do you run BMDFM on Linux with glibc that isolder than required by BMDFM?

. Why doesit seem like BMDFM keyboard input isdelayed on Linux Alpha-based machines?
. How do you add “NUM A-awareness’ to BMDFM ?

. How do you resolvelcc linkage issues on €2k Linux?

. How do you overwrite internal functions of BMDFM with your own functions?

. How do you changeinternal operation set of VM language?

. How do you run BMDFM on IBM mainframe z/OS?

. Isthere something in common between BMDFM and a multi-issue dynamic scheduling CPU?
. How isthe BMDFM Shared Memory Pool architected?

* % *

1. Why isthe true multi-process model used in BMDFM additionally to multithreading?

There are a couple of reasons explaining why the true multi-process model is chosen for the BMDFM implementation:

e The threading models are different from OS kernel to OS kernel. Threading model Mx1 runs all threads of the user
process space through a single thread of kernel space relying on the kernel scheduler only. Threading model 1x1 runs
each thread of the user process space through a separate dedicated thread of kernel space relying on the kernel
scheduler only. Threading model MXN maps M threads of the user process space to N threads of kernel space relying
on both the kernel scheduler and the user process multiplexing scheduler. In order to make BMDFM portable across
different SMP platforms and the OS kernels, the true multi-process model is chosen. Such a solution compiles and runs

under all OS kernelsin the same way. No additional user process multiplexing scheduler is required.

e Performance is the most important point. The multi-process model is more scalable and has better performancein
practice than the multithreading model when running tasks on a big iron. Multithreading might work faster for

multicores and many-cor es.

One serious reason that speaks for athreading approach isthat it isa much cheaper way to create/dismiss a thread compared
to the effort spent for a process fork. However, BMDFM does not fork processes at runtime; all processes are created at the
initialization phase only. Note that BMDFM can be configured to run in the multithreaded mode as well as in the multi-process

mode.

Note that POSI X-semaphores scale and perform better than SVR4-semaphores. BMDFM can be configured using either
POSI X-semaphores or SVR4-semaphores as synchronization primitives (on platforms where POS|X-semaphores are

available for inter-process synchronization).

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 1 0of 38 = http://bmdfm.com

2. Where do you see version/build/revision of BMDFM?

The software revision can be seen in the command line prompt for each BMDFM utility as shown in the examples below:

Terminal (Intel x86-64; Linux) Terminal (SGI MIPS;
$ fastlisp $ fastlisp
fastlisp ==> stderr fastlisp ==> stde
/* fastlisp.c - FastLlsp Compiler with Runtime Environment. /* fastlisp.c - FastLlsp Compiler with Runtime Environment.
Original 32-bit version for UNIX was founded && written by Original 32-bit version for UNIX was founded && written by
Sancho Mining 05-05-1996 10:10:29. 1Bp||| */ sancho Mining 05-05-1996 10:10:29. 1Bpm */
Usage0: fastlisp -help Usage0: fastlisp -h|--help
Usagel: fastlisp -versions Usagel: fastlisp -V|--versions
Usage2: fastlisp [-q|--quiet] <FastLisp file name> [args...] Usage2: fastlisp [—q| -quiet] <FastLisp file name> [args...]
Usage3: fastlisp --showDebugInfo] <FastLisp_file_name> [args...] Usage3: fastlisp [-sd showDebugInfo] <FastLisp_file name> [args...]

Usage4: fastlisp compile2disk] <FastLisp_file_name> [args...] Usage4: fastlisp [-c|--compile2disk] <FastLisp file name> [args.

Usage5: fastlisp compileMinimized2disk] <FastLisp_file name> [args...] Usage5: fastlisp [-cm|--compileMinimized2disk] <FastLisp file name> [args...]
Usage6: fastlisp [-q|--quiet] <Precompiled FastLisp_file_names Usage6: fastlisp [- q| -quiet] <Precompiled FastLisp_file name
Usage7: fastlisp [-sd|--showDebugInfo] <Precompiled FastLisp_file_name> Usage7: fastlisp [-sd|--showDebugInfo] <Precompiled FastLisp_: f11e _name>

Runtime environment variable dump: Runtime environment variable dump:
; FAST_LISP_CODE_PRINT _TERM_WID

FAST LISP_CODE_PRINT _DECOMPILED=1;
FAST_LISP_MAPCAR WITH DECOMPILER=1;

FAST LISP_COMPILE JUSTIFIED TYPES=1; FAST LISP_COMPILE JUSTIFIED TYPES= i
FAST_LISP_COMPILE_WITH_DEBUGINFO=1; FAST_LISP_COMPILE_WITH_DEBUGINFO=
The following environment variable: The following environment variable:
FAST LISP_CFGPROFILE path="fastlisp.cfg" FAST LISP_CFGPROFILE path="fastlisp.cfg"
specifies a configuration profile that can be used for the Global FastLisp specifies a configuration profile that can be used for the Global FastLisp
function definitions. The format of the configuration profile is: function definitions. The format of the configuration profile is
<(DEFUN ...)>{ <(DEFUN ...)>} # <EOF>. <(DEFUN ...)>{ <(DEFUN ...)>} # <EOF>.
Compiled on: "Linux RedHatELS72VM 3.10.0-514.26.2.el7.x86_64 #1 SMP Fri Jun 30 Compiled on: "IRIX64 SGImipsIRIX 6.5 07202013 IP35".
05:26:04 UTC 2017 x86_64". Compiled by: "MIPSpro Compilers: Version 7.4.4m as [ELF 64-bit MSB mips-4 dynam
Compiled by: "gcc version 4.8.5 20150623 (Red Hat 4.8.5-11) (GCC) as [ELF 64-bi ic executable MIPS - version 1] at systime Fri Jul 13 13:05:43 MET DST 2018".
t LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared lib RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
s), for GNU/Linux 2.6.32, stripped] at systime Fri Jul 13 13:01:55 CEST 2018". $
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
S
Terminal (Sun SPARC; SunOS) Terminal (HP PA-RISC; HP-UX)
$ BMDFMldr -h $ BMDFMldr -h
BMDFMldr ==> stdout: BMDFMldr ==> stdout:
/* BMDFMldr.c - The External Task PROC Unit (The Loader and Listener Pair) /* BMDFMldr.c - The External Task PROC Unit (The Loader and Listener Pair)
for the "Broken Mind" Data-Flow Machine. for the "Broken Mind" Data-Flow Machine.
Original 32-bit version for UNIX was founded && written by: Original 32-bit version for UNIX was founded && written by:
Sancho Mining 08-09-1996 4:59:39.14pm */ Sancho Mining 08-09-1996 4:59:39.14pm */
Usage0: BMDFMldr -help Usage0: BMDFMldr -h|--help
Usagel: BMDFMldr -versions Usagel: BMDFMldr -V|--versions

Usage2: BMDFMldr
Usage3: BMDFMldr

quiet] <FastLisp file name> [args...] Usage2: BMDFMldr
| --showDebugInfo] <FastLisp file name» [args Usage3: BMDFMldr
Usage4: BMDFMldr compile2disk] <FastLisp_file_name> [args. Usage4: BMDFMldr
Usage5: BMDFMldr quiet] <Precompiled FastLisp file name> Usage5: BMDFMldr
Usage6: BMDFMldr [-sd|--showDebugInfo] <Precompiled FastLisp_file_ name> Usage6: BMDFMldr

q| -quiet] <FastLisp file name> [args...]

d| - -showDebugInfo] <FastLisp file names> [args .
-compile2disk] <FastLisp_file name> [args. B
-quiet] <Precompiled FastLisp file name>
sd\--shownebuglnfo] <Precompiled FastLisp file name>

[-
[-c
[-
-

Runtime environment variable dump: Runtime environment variable dum
BM_DFM_CODE_PRINT _TERM WIDE
BM_DFM_CODE_PRINT__CFG_UDF=
BM_DFM_CODE_PRINT _MODIFIED_SRC=
BM_DFM_CODE_PRINT__DUMPED_SRC=1
BM_DFM_CODE_PRINT _LINKED=1;
BM_DFM_CODE_PRINT _DFM_UNICOD
BM_DFM_MAPCAR_WITH_DECOMPILER
BM_DFM_COMPILE_JUSTIFIED_TYPES.
BM_DFM_COMPILE_WITH_DEBUGINF!

BM_DFM_CODE_PRINT _LINKED=1;
BM_DFM_CODE_PRINT__DFM_UNICODE:
BM_DFM_MAPCAR_WITH_DECOMPILER
BM_DFM_COMPILE_JUSTIFIED_TYPES:
H BM_DFM_COMPILE_WITH_DEBUGINFO=1;
/tmp/ .BMDFMsrv" ; BM_DFM_CONNECTION_FILE pat!

BM_DFM_CONNECTION_FILE_path: /tmp/ .BMDFMsxv";
BM_DFM_CONNECTION_NPIP path="/tmp/.BMDFMsrv_npipe"; BM_DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";
VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.". VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "SunOS SunOS_Ultra45 5.10 Generic_147147-26 sun4u sparc'. Compiled on: "HP-UX c8k-HPUX B.11.23 U 9000/785 4042425048".
Compiled by: "cc: Sun C 5.10 SunOS_sparc Patch 141861-09 2012/08/15 as [ELF 64- Compiled by: "HP ANSI C / C++ B3910B C.03.70 (HP92453-01 B.11.11.16 HP C Compil
bit MSB executable SPARCVY Version 1, dynamically linked, stripped] at systime er) as [ELF-64 executable object file - PA-RISC 2.0 (LP64) / HPPA64 (PA-RISC2.0
Fri Jul 13 13:08:19 CEST 2018". W)] at systime Fri Jul 13 13:10:52 METDST 2018".
S S
Terminal (IBM POWER RS/60 AIX) Terminal (DEC Alpha RISC; Tru64 OSF1l
$ BMDFMsrv -h $ BMDFMtrc -h
BMDFMsrv ==> stdout: BMDFMtrc ==> stdout:
/* BMDFMszv.c - The "Broken Mind" Data-Flow Machine SMP MIMD Server Unit. /* BMDFMtrc.c - The Interactive Tracer Unit

for the "Broken Mind" Data-Flow Machine.
Original 32-bit version for UNIX was founded && written by: ---
Sancho Mining 20-07-1996 2:49:49.58pm */ Original 32-bit version for UNIX was founded && written by:
Usage0: BMDFMsrv Sancho Mining 18-09-1996 1:22:49.50am */
Usagel: BMDFMsrv Usage0: BMDFMtrc
Usage2: BMDFMsrv Usagel: BMDFMtrc -h|--help
Usage3: BMDFMsrv Usage2: BMDFMtrc -V|--versions

Usage4: BMDFMsrv -n|--no-logs Usage3: BMDFMtrc -1|--log-last-screen [<log_file name>]
Usage5: BMDFMsrv [-d|--daemonize] -1|--logfile <log_file_name> Usage4: BMDFMtrc -L|--log-all-screens [<log_file_name>]
Runtime environment variable dump: Runtime environment variable dum

BM_DFM_MAPCAR_WITH_DECOMPILER
BM DFM COMPILE JUSTIFIED)_TYPES:
BM_DFM_COMPILE_WITH_DEBUGINFO=1;
BM_DFM_CFGPRDFILE_pat . /BMDFMSTV.CEg" ;
BM_DFM_PROCstat_path="./PROCstat"; VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".

BM_DFM_CPUPROC_path=" /CPUPRDC”‘ Compiled on: "OSF1l DECtru64alpha V5.1 2650 alpha".

BM_DEM_OQPROC_path="./0QPROC" ; Compiled by: "Compaq C V6.5-303 (dtk) on HP Tru64 UNIX V5.1B (Rev. 2650) Compil
BM_DFM_IORBPROC path="./IORBPROC"; er Driver V6.5-302 (dtk) cc Driver as [COFF format alpha dynamically linked, de

BM DFM CONNECTION FILEJath "/tmp/.BMDFMsTv" ; i 3 - 3 ~ .
BN DEM CONNBECTION NPT Bathor/tio/ | BMDEVery 4pipe”; ;\agglp;gegz?;;:?:Zazéz’rogoggaecc module stripped - version 3.14-2] at systime Fr

BM_DFM_EMERGENCY_IPC_FILE path="./freeIPC.inf"; $
BM_DFM_LOGFILE_KEEP_NxSIZE="10x10000000";

BM_DFM_PROCLOGFILE_KEEP NxSIZE="10x10000000";
BM_DFM_PROCLOGFILE_path="./PROCs.log";

BM_DFM_TRACER_LOG__TERM_WIDE=
BM DFM CONNECTION FILE_path ”/tmp/ BMDFMsrv" ;
BM_DFM_CONNECTION_NPIP path="/tmp/ .BMDEMSTV_npip

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".

Compiled o AIX IBMpowerCHRP 1 7 00CESBB34C00".

Compiled b "IBM XL C/C++ for AIX, V13.1.3 (5725-C72, 5765-J07) Version: 13.01
.0003.0000 as [64-bit XCOFF executable or object module] at systime Fri Jul 13
13:09:43 DFT 2018".

s
Terminal (Intel Itanium IA-64 EPIC VLIW; HP-UX) i (Intel x86-64; Apple MacOS X)
$ IORBPROC $ OQPROC
/* IORBPROC.c - The IORBP PROC /* OQPROC.c - The 0Q PROC
a part of the "Broken Mind" Data-Flow Machine. a part of the "Broken Mind" Data-Flow Machine.
Original 32-bit version for UNIX was founded && written by: Original 32-bit version for UNIX was founded && written
Sancho Mining 20-07-1996 2:49:49.58pm */ Sancho Mining 20-07-1996 2:49:49. 58pll| */
Error: wrong number of arguments. Error: wrong number of arguments.
Usage: IORBPROC should be used by the BM_DFM Server only. Usage: OQPROC should be used by the BM_DFM Server only.
VERSION BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9. VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9."
WHP-UX IA64hpux B.11.31 U ia64 2897190201" Compiled on: "Darwin MacIntel 14.5.0 Darwin Kernel Version 14.5.0: Tue Apr 11 1
"cc: HP C/aC++ B3910B A.06.28 [Nov 21 2013] as [ELF-64 executable 6:12:42 PDT 2017; root:xnu-2782.50.9.2.3~1/RELEASE_X86_64 x86_64".
object file - IA64] at systime Fri Jul 13 13:18:27 MESZ 2018". Compiled by: "Apple LLVM version 7.0.2 (clang-700.1. 81) as [Mach-O 64-bit execu
REEURNED STATUS: ABNORMAL PROGRAM TERMINATION. table x86_64] at systime Fri Jul 13 13:02:16 CEST 2018"
s

RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$

Terminal (Intel Xeon Phi MIC; Linux) Terminal (MCST Elbrus VLIW; Linux)
$ CPUPROC $ PROCstat
/* CPUPROC.c - The CPU PROC /* PROCstat.c - The PROC stat

a part of the "Broken Mind" Data-Flow Machine a part of the "Broken Mind" Data-Flow Machine

ongmal 32-bit version for UNIX was founded && written by: Original 32- bit version for UNIX was founded && written by:
Sancho Mining 20-07-1996 2:49:49.58pm */ Sancho Mining 20-07-1996 2:49:49.58pm */

Error: wrong number of arguments. Error: wrong number of arguments.

Usage: CPUPROC should be used by the BM_DFM Server only. Usage: PROCstat should be used by the BM_DFM Server only.

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.". VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".

Compiled on: "Linux RedHatELS62VM 2.6.32-220.13.1.e16.x86_64 #1 SMP Thu Mar 29 Compiled on: "Linux debiandbabayan-64 2.6.33-elbrus.033.3.42 #1 SMP Thu Apr 23

11:46:40 EDT 2012 x86_64". 22:28:28 MSK 2015 e2k’.

Compiled by: "ice Intel(R) C Intel(R) 64 Compiler XE for applications running o Compiled by: "lcc:1.19.11:Dec-13-2014:e2k-2c+-linux (gcc version 4.4.0 compatib

n Intel(R) 64, Version 15.0.0.090 Build 20140723 (Copyright (C) 1985-2014 Intel le) as [ELF 64-bit LSB executable, MCST Elbrus, version 1 (SYSV), dynamically 1

Corporation. All rights reserved.) as [ELF 64-bit LSB executable, Intel K1OM, inked (uses shared libs), for GNU/Linux 2.6.33, stripped] at systime Fri Jul 13

version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.4.0, s 14:15:11 MSK 2018".

tripped] at systime Fri Jul 13 13:01:31 CEST 2018". l;EiURNED STATUS: ABNORMAL PROGRAM TERMINATION.

REiURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$

Terminals

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 20of 38 = http://bmdfm.com

3. How do you solve termcap issues?

BMDFM uses the standard termcap database for the terminal capabilities. Should BMDFM display incorrectly, please use
the following troubleshooting procedures:

Check the $TERM environment variable whether it contains a correct terminal name, which can be found in the termcap
database. If not, then set the one that is correct. If the standard termcap database is missing in the system then use the one
provided with the BMDFM distribution:

Terminal (bash)

$ export TERM=vt100
$ export TERMCAP=/<full path>/termcap
$

Terminal

If the running BMDFM instance is daemonized (detached from a terminal) then termcap is initialized with the following
default termcap settings skipping all roundtrips to the termcap database:

BMDFMsrv.log (termcap record)

[TermCap] : TERM=ansi.sys. Init TERMCAP for the BM_DFM console done.
[TermCap] : Current termcap settings:

[TermCap] : TERM_TYPE="ansi.sys'; LINES_TERM="25'; COLUMNS_TERM="80';
[TermCap] : CLRSCR_TERM="\e[m\e[7h\e[2J'; REVERSE_TERM="\e[7m'; BLINK TERM="';
[TermCap] : BOLD_TERM="\e[lm'; NORMAL TERM="\e[m'; HIDECURSOR_TERM="';
[TermCap] : SHOWCURSOR_TERM=""'; GOTOCURSOR_TERM="\e[%d;%dH'.

[TermCap] : Remote terminal device driver installed.

Fragment of BMDFMsrv.log file related to boot logs

The BMDFM runtime prefixes user’s VM code with termcap variables. The variable names are the same as for the
corresponding termcap functions and the assigned values are taken for the current terminal:

fastlisp/BMDFM1ldr log (PATTERN No# 2 for fastlisp or No# 3 for BMDFMIldr)

Modifying the FastLisp code (PATTERN No# 2)...
(PROGN { (SETQ <termcap_var> <termcap_vals>) }<FastLisp_progs)
(PROGN
(SETQ@S MAIN:TERM TYPE@S "linux")
SETQ@I MAIN:LINES_TERM@I 25)
SETQ@I MAIN:COLUMNS_TERM@I 80)
SETQ@S MAIN:CLRSCR_TERM@S "\e[H\e[J")
SETQ@S MAIN:REVERSE_TERM@S "\e[7m")
SETQ@S MAIN:BLINK TERM@S "\e[5m")
SETQ@S MAIN:BOLD_TERM@S "\e[lm")
SETQ@S MAIN:NORMAL_TERM@S "\e[m")
SETQ@S MAIN:HIDECURSOR_TERM@S "\e[?251")
SETQ@S MAIN:SHOWCURSOR_TERM@S "\e[?25h")
SETQ@S MAIN:GOTOCURSOR _TERM@S "\e[%i%d;%dH")

Fragments of fastliso/BMDFMIdr log related to initialization phase

(
(
(
(
(
(
(
(
(
(

A user can choose to use termcap functions or variables. However, remember that the termcap functions are evaluated by
the CPUPROC processes that could be started somewhere on a different terminal having different termcap settings:

VM code fragment using termcap functions
(1f (|| (]| (!= term type (term type)) (!= lines term (lines term))) (!= columns_term (columns_term)))
(while 1 (progn
(outf "\nChoose terminal:\n" nil)

outf " 0 - TERM_TYPE="%s';" term type) (outf " LINES_TERM="%d';" lines_term)
outf " COLUMNS_TERM="%d';\n" columns_term) (outf " 1 - TERM TYPE="%s';" (term type))
outf " LINES TERM="%d';" (lines_term)) (outf " COLUMNS_TERM="%d'.\n" (columns_term))

outf "Enter your choice (0 or 1) or press 'q' to quit:" nil)
setq ch (upper (scan_console 5000000)))

if (|| (== ch "Q") (== (asc ch) 3))
(exit)
(1f (== ch "o")
(break)
(1f (== ch "1")
(progn

(setq term type (term type)) (setq lines_term (lines_term))
(setq columns_term (columns_term)) (setqg clrscr_term (clrscr_term))
(setq reverse term (reverse_term)) (setq blink term (blink_ term))
(setq bold term (bold term)) (setq normal_ term (normal term))
(setq hidecursor_term (hidecursor_term)) (setq showcursor_term (showcursor_ term))
(setq gotocursor term (gotocursor term -1 -1))
(break)
)
(if (== (asc ch) 0)

nil

(outf "\n\n*** Invalid selection ***\n" nil)

))
nil

VM code fragment

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 30f 38 = http://bmdfm.com

4. How do you change the default shared memory and semaphore limitson Linux?

On Linux, the shared memory limits (both shmmax and shmall) might be set to a low value by default. However, they can
be changed on the /proc file system (no reboot needed). For example, to allow one 64GB:

$ su

echo 68719476736 >/proc/sys/kernel/shmall
echo 68719476736 >/proc/sys/kernel/shmmax
#

Terminal

A user can add these commands into a script that is executed at boot time. Alternatively, a user can use the sysctl utility, if
available, to control these parameters. The following lines can be added to afile called /etc/sysctl.conf:

/etc/sysctl.conf
#

kernel.shmall = 68719476736
kernel.shmmax = 68719476736
. . .

/etc/sysctl.conf

Thisfileisusually processed at boot time, but sysctl can be called from the command line as well.

$ su

sysctl -w kernel.shmall=68719476736
sysctl -w kernel.shmmax=68719476736
#

Termina
The same strategy can be applied to the default semaphore limits (semmni, semms and semmns).
Consider configuring BMDFM with POSI X-semaphores, which scale and perform better than SVR4-semaphores. The

number of POSI X-semaphores is not limited. POSI X-semaphores may have greater values than SVR4-semaphores (BMDFM
resources are limited by the maximal semaphore value).

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 4 0f 38 = http://bmdfm.com

5. How do you find out whether the OSisableto provide enough semaphoresfor BMDFM?

If the OS kernel is configured with too few semaphore resources, BMDFM will not start at all, giving an error message
indicating insufficient semaphore resources. Most critical consumers of the semaphore resources are OQ (Operation Queue)
and DB (Data Buffer), depending on their sizes. The BMDFM boot logs show the number of semaphores in
“<obtained>/<required>" format. Even if the log is scrolled out of the screen, all records can be found in the BMDFM server

log file:

BMDFMsrv.log (successful sema4 record)

[0SInfo] :
[0SInfo] :
[0SInfo] :
[0SInfo] :
[0SInfo] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :

Current UNIX SVR4 IPC limits:
sem: semaphore constants are not available.
shm: shared memory constants are not available.
Current POSIX SEMA4 limits:
sem: semaphore constants are not available.
Organizing an abstract DFM UNIT STRUCTURE in the SHMEM POOL:
Initializing CPU PROC state array...
Organizing DFM IORBPs...
Collecting system semaphores for the OQ and DB...
Sem0Q=2000/2000, SemDBAreas=28000/28000.
Organizing DFM 0Q...
Organizing DFM DB...

Fragment of BMDFMsrv.log file related to boot logs

BMDFM can also function even with fewer semaphores than required. However, performance degradation can be observed
in this case because all available semaphores are distributed along OQ and DB with certain interleaves. It is worth paying
attention to the following possible warning message in the logs:

BMDFMsrv.log (not very successful sema4 record)

[0SInfo] :
[0SInfo] :
[0SInfo] :
[0SInfo] :
[0SInfo] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :
[SysMsg] :

Current UNIX SVR4 IPC limits:
sem: semaphore constants are not available.
shm: shared memory constants are not available.
Current POSIX SEMA4 limits:
sem: semaphore constants are not available.
Organizing an abstract DFM UNIT STRUCTURE in the SHMEM POOL:

Initializing CPU PROC state array...

Organizing DFM IORBPs...

Collecting system semaphores for the OQ and DB...
WARNING!!! Poor resource of the system semaphores.
Sem0Q=412/3000, SemDBAreas=5507/40000.

Organizing DFM 0Q...

Organizing DFM DB...

Fragment of BMDFMsrv.log file related to boot logs

It is aso worth remembering the known fact that the semaphore resources (like al other IPC resources) can remain
occupied in the OS kernel. Though BMDFM aways cleans up its IPC resources correctly, it makes sense to check IPC
resources after an unintentional crash situation. The standard ipcs and ipcrm utilities can be used for this purpose. Besides,
BMDFM has its own utility called freel PC. This utility relies on the freel PC.inf file with IPC resource descriptors used and
recorded by the BMDFM Server.

Here is a hint on how to create a Purge BMDFM.sh shell script able to purge the OS correctly from a single instance of

BMDFM:

Purge BMDFM.sh

#!/bin/sh

freeIPC

export BM_]
export BM_]
export BM_]

rm -f $BM_|

DFM_CONNECTION_FILE_path="/tmp/.BMDFMsrv";
DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";
DFM_EMERGENCY IPC_FILE path="./freeIPC.inf";

killall -9 BMDFMsrv BMDFMldr BMDFMtrc PROCstat CPUPROC OQPROC IORBPROC 2>/dev/null

DFM_CONNECTION_FILE_path $BM DFM_CONNECTION NPIP path 2>/dev/null

Purge BMDFM .sh shell script

Consider configuring BMDFM with POSI X-semaphores, which scale and perform better than SVR4-semaphores. The
number of POSI X-semaphores is not limited. POSI X-semaphores may have greater values than SVR4-semaphores (BMDFM
resources are limited by the maximal semaphore value).

BMDFM FAQ (“ A Little Boy and His BMDFM") = Page50f 38 =

http://bmdfm.com

6. How do you start the BMDFM Server detached from a terminal and control it later?

A user can start BMDFMsrv from the command line with --daemonize option. Later on, the started instance can be
controlled through the BMDFM external named pipe. A second terminal can be used for dynamic logging. Such an open
architectural approach even allows a user to write a kind of her/his own BMDFM Remote Console:

Terminal 0 (bash)

$ export BMDFM LOG FILENAME=BMDFMsrv.log

$ export BMDFM ERR FILENAME=BMDFMSrv.err

$ export BM DFM CONNECTION NPIP path=/tmp/.BMDFMsrv_npipe

$ BMDFMsrv --daemonize --logfile $BMDFM LOG FILENAME 2>$BMDFM ERR FILENAME &
$ echo command >$BM DFM CONNECTION NPIP path

$ echo command down down >$BM DFM CONNECTION NPIP path

$

Terminal 1 (csh)

$ setenv BMDFM LOG FILENAME BMDFMsrv.log

$ tail -f $BMDFM LOG FILENAME

[Vers] : Binary Modular Data-Flow Machine (BM_DFM) Release History
[Vers] : and Codenames:

[Vers] : Years | Versions | BM_DFM Codename | Release

[Vers]l: ----------- AR LR e b E L L dommmmmm e
[Vers] : 1996-1997 | 0.0.1-1.9.9 | "Bare Metal" DFM | official

[Vers] : 1998-1999 | 2.0.0-2.9.9 | "Big Monster" DFM | Unofficial
[Vers] : 2000-2001 | 3.0.0-3.9.9 | "Beast Master" DFM | Unofficial
[Vers] : 2002-2003 | 4.0.0-4.9.9 | "Behemoth Mighty" DFM | Official

[Vers] : 2004-2015 | 5.0.0-5.9.9 | "Broken Mind" DFM | official
[Vers] : VERSION_BMDFM_SYS_="Sancho M. BMDFMSys V5.9.9.' # The BM_DFM Server.
[Vers]: VERSION_ TERMCAP___ ="Sancho M. TermCap v.1.2.0.' # Term capabilities.
[Vers] : VERSION_FSTLISP___ ="Sancho M. FstLisp v.2.9.6.' # FastLisp RTEngine.
[Vers] : VERSION_CFLPUDF___ =>Sancho M. CFLPUDF v.1.0.0.' # FastLSP UDFs in C.
[Vers] : VERSION_STRGLIB___="Sancho M. StrgLib v.2.2.5.' # FstString library.
[Vers]: VERSION MEMPOOL___ ="Sancho M. MemPool v.2.8.8.' # ShMem Pool driver.

[TermCap] : Server is running on TERM=ansi.sys (80x25).
[SysMsg] : Overall machinery init for the virtual out-of-order general purpos

e processing was completed at systime Fri Nov 13 18:26:04 2015.

[SysMsg] : Going simultaneous jobs running all the threads in parallel...
[DFMSrv] : All resources were unhooked and invoked successfully!

[SysMsg] : The complete "Broken Mind" Data-Flow Machine Server has been fully
started.

[SysMsg]l : The entire DFM SMP MIMD architecture is ready for dynamic scheduli

ng now.

[Legacy MainFrame_Initial_ Greeting Message] : GOOD EVENING.

[SysMsg]l : A message routed out of the NPIPE at systime Fri Nov 13 18:26:13 2

015.

npipe [COMMAND] : [MSG#0]

Console input

[SysMsg] : = System time is Fri Nov 13 18:26:13 2015. ==========
[Exr]: *** Boom! Invalid command!

[Msg] : Type “help' or “?' to see the list of possible commands!

[Msg] : The commands will also be accepted from the external named pipe:

[Msg] : ~/tmp/.BMDFMsrv_npipe' in "COMMAND <command>\n" format.
[SysMsgl : A message routed out of the NPIPE at systime Fri Nov 13 18:26:22 2
015.

npipe [COMMAND] : down down [MSG#1]

Console input: down down

[SysMsg] : = System time is Fri Nov 13 18:26:22 2015. ==========
[SysMsg] : Now, the BM_DFM Server is urgently going down...
[SysMsgl : Destroying the external connection file...

[SysMsg] : Destroying the ExtTask(Trace) nFIFO pipe...
[SysMsg] : Sending SIGINT to ExtTasks in TCZ...

[SysMsg] : Sending SIGTERM to ExtTasks in TCZ...

[SysMsgl : Sending SIGKILL to ExtTasks in TCZ...

[SysMsg] : Sending SIGKILL to ExtTraces in TPA...

[SysMsgl : Sending SIGKILL to the PROCstat...

[SysMsg] : Sending SIGKILL to the CPU PROCs...

[SysMsgl : Sending SIGKILL to the OQ PROCs...

[SysMsg] : Sending SIGKILL to the IORBP PROCs...

[SysMsg] : Invoking taskjob_end callback() ...

[SysMsg] : Deinitializing BM_DFM...

[DFMSrv] : Release semaphores done.

[DFMSrv] : Close msg PROC pipe done.

[MemPool] : The shared memory pool deinit done.

[SysMsg] : Destroying the freeIPC EMERGENCY CASE file...
[SysMsg]l : SHUTDOWN completed at systime Fri Nov 13 18:26:23 2015.
[Legacy MainFrame_ Final Message]: GOOD BYE.

[SysMsg] : Closing the logs ~./BMDFMsrv.log'...

x Logfile is closed at systime Fri Nov 13 18:26:23 2015 *x
“c

LN

Terminal 0 and Terminal 1

Obvioudly, the best practice would be to source all BMDFM environment variables in a working shell and to create a script
for the BMDFM Server console commands (one script for all commands or separate scripts for each command) as shown in the
examples below:

BMDFMcmd . sh
#1/bin/sh

echo command $* >$BM_DFM_CONNECTION_NPIP_path;
tail -200 $BMDFM LOG_FILENAME

downdown. sh

#!/bin/sh

echo command down down >$BM_DFM_CONNECTION_NPIP_ path;
tail -100 $BMDFM_LOG_FILENAME

BMDFMcmd.sh and downdown.sh shell scripts

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 60of 38 = http://bmdfm.com

7. How do you start many instances of BMDFM on the same machine?

By default, it is not possible to start many instances of BMDFM on the same machine because the BMDFM Server checks
for existence and creates both the /tmp/.BMDFMsrv connection file and the /tmp/.BMDFMsrv_npipe connection named pipe
in the /tmp directory. However, those default names (as well as other default names) can be redefined via the corresponding
environment variables. As an example, the following BMDFMrunO.sh shell script can start an additional unique local
BMDFM instance:

BMDFMrunO.sh
#!/bin/sh

export BM_DFM_CFGPROFILE_path="./BMDFMsrv0.cfg”;

export BMDFMiLOGiFILENAME:”A/BMDFMsrvOAlog”;

export BMDFMiERRiFILENAME:”A/BMDFMsrvOAerr”;

export BM_DFM_CONNECTION_FILE_path="./.BMDFMsrv0”;
export BM_DFM_CONNECTION_NPIP_path="./.BMDFMsrv0O_npipe” ;
export BM DFM EMERGENCY IPC FILE path="./freeIPCO.inf”;

BMDFMsrv --logfile $BMDFM LOG_FILENAME 2>$BMDFM_ERR_FILENAME

BMDFMrun0.sh startup shell script

It is aso not a bad idea to source the mentioned variables in a user shell environment to be reused by BMDFMIdr,
BMDFMtrc and freel PC if necessary.

One more important thing to remember here is the number of used SVR4 semaphores. In other words, it is important to
prevent a situation where one running BMDFM instance holds all available SVR4 semaphores in the system, blocking startup
of other BMDFM instances. The OQ DB_SEM_LIMIT configuration parameter of the BMDFM configuration profile serves
exactly this purpose. The owner of a BMDFM instance is responsible to set this value correctly, based upon the number of all
available SVR4 semaphores in the system and the number of BMDFM instances planned to be run simultaneoudly. All owners,
for example, can have akind of settlement agreement regarding the allowed SV R4 semaphore quota per instance.

Consider configuring BMDFM with POSI X-semaphores, which scale and perform better than SVR4-semaphores. The
number of POSI X-semaphores is not limited. POSI X-semaphores may have greater values than SVR4-semaphores (BMDFM
resources are limited by the maximal semaphore value).

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 7of 38 = http://bmdfm.com

8. How do you get a list of recognizable parametersfor the BMDFM configuration profile?

The dfmkernel and dfmserver commands of the BMDFM Server console display al available configuration parameters
merged with their current values by “=" sign:

Output of dfmkernel

Console input: dfmkernel

[SysMsg] : == == System time is Fri Nov 13 18:36:43 2015. ==
[DFMKrnl] : Global parameters of the BM_DFM Kernel:

[DFMKrnl] : Operation Queue (0Q) size: Q 0Q=1000Entities.
[DFMKrnl] : Data Buffer (DB) size: Q DB=500Entities.

[DFMKrnl] : I/0 Ring Buffer Port (IORBP) size: Q IORBP=100Entities.

[DFMKrnl] : Number of IORBPs: N_IORBP=10.

[DFMKrnl] : Number of main processes (CPU PROCs): N_CPUPROC=8.

[DFMKrnl] : Number of OQ PROCs: N_OQPROC=8.

[DFMKrnl] : Number of IORBP PROCs: N_IORBPPROC=8.

[DFMKrnl] : Block size used in OQ search algorithm is 62.

[DFMKrnl] : Size of caches in speculative prediction unit is 64000Bytes.

[DFMKrnl] : Associative hierarchy of speculative tagging max. 532000Bytes.

[DFMKrnl] : mapcar () uses decompiler: BM_DFM_MAPCAR_WITH_DECOMPILER is set to 1.
[DFMKrnl] : Compiler uses justified types: BM_DFM_COMPILE JUSTIFIED TYPES is set to 1.
[DFMKrnl] : Compiler generates debug info: BM_DFM_COMPILE_WITH_DEBUGINFO is set to 1.
[DFMKrnl] : Display stall warnings: STALL_ WARNINGS=NO.

[DFMKrnl] : Hard array synchronization: HARD_ ARRAY SYNCHRO=NO.

[DFMKrnl] : Async heap descriptor and boundary checks: AHEAP_ ACCESS_CHECK=YES.
[DFMKrnl] : I/0 synchronization of external task: EXT IN OUT SYNCHRO=YES.

[DFMKrnl] : Compensate ShMem relaxed consistency: RELAXED CNSTN_ SM MODEL=YES.
[DFMKrnl] : Use SVR4 or POSIX semaphores: POSIX SEMA4 SYNC=RW+COUNT.

[DFMKrnl] : SVR4 sema4 is replaced with POSIX sema4 where possible.

Output of dfmserver

Console input: dfmserver

[SysMsg] : == System time is Fri Nov 13 18:36:53 2015.

[DFMSrv] : PIDs of the BM_DFM processes:

[DFMSTv] : N# | cpuprOCs | ogPrOCS | IORBPPROCs | PROCstat
[DFMSrv] : ------------ B ittt B ittt B ittt B ittt
[DFMSrV] : o | 14926 | 14934 | 14942 | 14925
[DFMSrv] : 1 14927 | 14935 | 14943 |

[DFMSrV] : 2 | 14928 | 14936 | 14944 |

[DFMSrv] : 3| 14929 | 14937 | 14945 |

[DFMSrV] : 4 | 14930 | 14938 | 14946 |

[DFMSrv] : 5 | 14931 | 14939 | 14947 |

[DFMSrV] : 6 | 14932 | 14940 | 14948 |

[DFMSrv] : 7 | 14933 | 14941 | 14949 |

[DFMSrv]: CPU PROC is multithreaded: CPUPROC_MTHREAD=NO.

[DFMSrv]: 0Q PROC is multithreaded: OQPROC_MTHREAD=NO.

[DFMSrv]: IORBP PROC is multithreaded: IORBPPROC_MTHREAD=NO.

[DFMSrv]: BMDFMldr is multithreaded: BMDFMLDR MTHREAD=NO.

[DFMSrv] : Thread-Local Storage (TLS) verification: MTHREAD TLS_ CHECK=NO.

[DFMSrv] : Allow CPU PROC Address Space Layout Randomization (ASLR): ALLOW CPUPROC_ASLR=NO.
[DFMSrv] : Global parameters of the BM_DFM Server:

[DFMSrv] : AGGRESSIVE compilation: SPECULATIVE RISC_ARCH = 1(yes).
[DFMSrv] : Own system SHM_SEMAPHORE: REENTERANT SHMEM POOL = 1(yes) .
[DFMSrv] : PID of the BM_DFM Server is 8786.

[DFMSrv] : Number of SVR4 semaphores per group is 250.

[DFMSrv] : Maximal SVR4/POSIX semaphore value is 2147483647.

[DFMSrv] : ShMemPool mount address (O=auto): SHMEM POOL_MNTADDR=999999999.
[DFMSrv] : ShMemPool size: SHMEM POOL SIZE=500000000Bytes.

[DFMSrv] : Number of ShMemPool banks: SHMEM POOL_BANKS=10Banks.

[DFMSrv] : ShMemPool and sema4 permissions are: SHMEM POOL_PERMS=432.
[DFMSTV] : (0660=="rw-rw----") .

[DFMSrv] : Array block size: ARRAYBLOCK SIZE=64Entities.

[DFMSrv] : 0Q function argument count: OQ FUNC_ARG COUNT=32Entities.
[DFMSrv] : Time to scan DFM for statistic: T_STATISTIC=1Second.

[DFMSrv] : Max number of OQ&&DB semaphores (0O=unlim): OQ_ DB_SEM LIMIT=0.
[DFMSrv] : Number of Trace Ports (TPs): N_TRACEPORT=5.

[DFMSrv] : Heartbeats for the CPU, OQ && IORBP PROCs: PROC_HEARTBEATS=YES.
[DFMSrv] : Console output is adjusted for UTF8: CONSOLE_ OUT_UTF8=NO.
[DFMSrv] : Detection of dataflow stall hazards: DFSTLHAZARD DETECT=YES.
[DFMSrv] : Async-Signal-Safety prior POSIX.1-2013: ASYNCSIGNAL SAFETY=NO.
[DFMSrv] : Allow dropping nonproductive instructions: ALLOW_DROP_NONPROD=NO.
[DFMSrv] : Server console logs are enabled.

[DFMSrv] : Logs are in ~./BMDFMsrv.log'.

[DFMSrv] : Keeping 10 old logfiles (10000000Bytes each).

[DFMSrv] : Registration logs for the CPU && IORBP PROCs: PROC_CPU_LOGS=NO.
[DFMSrv] : Runtime ErrCode for “ShMemPool space exhausted' is 252.
[DFMSrv] : Runtime ErrCode for “Dataflow stall hazard' is 253.

[DFMSrv] : Signal to reset/get used CPU time in child PROCs is 10 (irq) .
[DFMSrv] : Signal to unhook child PROCs out of a semaphore is 12 (irqg).
[DFMSrv] : Msg PROC unnamed pipe R/W IDs: rID=6, wID=7.

[DFMSrv] : External task named pipe ~/tmp/.BMDFMsrv_npipe' R/W ID=8.

Output of the dfmkernel and dfmserver commands on the BMDFM Server console

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 80of 38 = http://bmdfm.com

9. Where can it be necessary to change the mounting addr ess of the shared memory segment?

The shared memory segment is created, mounted and initialized by the BMDFM Server. Later on, al other BMDFM
processes mount the shared memory segment to their own virtual address spaces. By default, the mounting address is chosen by
the BMDFM Server and the OS automatically. This mounting address is the same (and it must be the same) for al other
processes. The BMDFM Server is able to assign the mounting address automatically because the size of its code segment is
practically the same as the code segment sizes of other processes and, additionally, a dynamic linker links practically against
the same runtime libraries so that they do not overlap the virtual address space of the shared memory segment. The standard Idd
utility is useful to get an idea of which runtime libraries are in use and which mounting address to choose manually if necessary:

$ 1dd BMDFMsrv
linux-vdso.so.1l => (0x00007ff£55dff000)
libm.so.6 => /1ib64/libm.so.6 (0x00000034a8600000)
libpthread.so.0 => /1ib64/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1ib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.s50.2 (0x00000034a8200000)

$ 1dd BMDFMldr
linux-vdso.so.1l => (0x00007ff£f0£f3£f£f000)
libm.so.6 => /1ib64/libm.so.6 (0x00000034a8600000)
libpthread.so.0 => /1ibé4/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1ib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.s50.2 (0x00000034a8200000)

$ 1dd BMDFMtrc
linux-vdso.so.l => (0x00007ff£f4c078000)
libpthread.so.0 => /1ibé64/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1lib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.s0.2 (0x00000034a8200000)

$ 1dd PROCstat
linux-vdso.so.1l => (0x00007f££11983000)
libpthread.so.0 => /1ib64/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1ib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.50.2 (0x00000034a8200000)

$ 1dd CPUPROC
linux-vdso.so.1l => (0x00007£££947b3000)
libm.so.6 => /1ib64/libm.so.6 (0x00000034a8600000)
libpthread.so.0 => /1ib64/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1ib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.s50.2 (0x00000034a8200000)

$ 1dd OQPROC
linux-vdso.so.l => (0x00007fffe51£ff000)
libpthread.so.0 => /1ibé64/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1lib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.s0.2 (0x00000034a8200000)

$ 1dd IORBPROC
linux-vdso.so.1l => (0x00007f££78bff000)
libpthread.so.0 => /1ib64/libpthread.so.0 (0x00000034a9200000)
libc.so.6 => /1lib64/libc.so.6 (0x00000034a8a00000)
/1ib64/1d-1linux-x86-64.s50.2 (0x00000034a8200000)

LN

Terminal

Even when a user extends the VM with his own implementations written in C/C++, those implementations are still linked
against BMDFMsrv, BMDFMIdr and CPUPROC, maintaining the equality of code segment sizes and the same set of runtime
libraries.

However, the following exceptional cases exist where a manually chosen mounting addressis required:

e A user prefersto link some of the BMDFM processes statically and some of them dynamically.
e A conditional compilation is applied that results in linking of different code sizes against the BMDFM processes (and
possibly a different set of runtime libraries).

The SHMEM_POOL_MNTADDR configuration parameter of the BMDFM configuration profile lets you set the mounting
address of the shared memory segment manually as needed.

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 90of 38 = http://bmdfm.com

10. Isthere any difference between a memory descriptor and a memory addr ess?

Memory descriptors are used only for backward compatibility with previous versions of BMDFM. The current
implementation of BMDFM always returns memory address in case either of a memory descriptor or a memory address. This
will also be supported in future versions of BMDFM. The two following VM code fragments are equivalent; the second one is
recommended and preferable:

VM code fragment (obsolete)

(setg mem_descr (asyncheap create size))

(setg mem_addr (asyncheap getaddress mem descr)

VM code fragment (recommended)
(setg mem_addr (asyncheap create size))

VM code fragments

The returned memory addresses are always aligned to the size of a long integer (4 bytes in case of 32-bit BMDFM and 8
bytes in case of 64-bit BMDFM). All standard built-in asyncheap-functions work correctly with such an alignment, they work
even where float-alignment is required and on all RISC-processors (note: x86, x86-64 and | A-64 are able to tolerate misaligned
data in contrast to most RISC-processors). In most use cases, a user writes his own functions in C/C++ that are consumers of
the returned memory addresses. Normally, it makes sense to align the addresses locally within every user-defined function,
keeping the original addresses for asyncheap_delete function. The following is a recommended example for address alignment:

Pattern for the address alignment (pseudo-code)
addr -> block allocated with size alignment_size* (NumberOfEntities+1)

addr = addr + (alignment size - abs(addr % alignment size))

(defun float_size (len (dump_f2s 0.)))

(defun udf (progn
(setg addr (+ 0 $1))

alignment
(setg addr (+ addr (- (float_size) (iabs (% addr (float_size))))))

...
))

(setq addr (asyncheap_ create (* (float_size) (++ NumberOfEntities))))
(udf addr)

(asyncheap delete addr)

UDF written in C

#define ULO unsigned long int

#define SLO signed long int

#define DFL double

void udf (const ULO *dat_ptr, struct fastlisp_data *ret_dat) {
DFL *float_array;
ret_ival (dat_ptr, (SLO*)&float_array) ;

// alignment
(ULO) float_array+=(sizeof (DFL) - (ULO) float_array%sizeof (DFL)) ;

/)

return;

Address alignment in VM code or in C code

BMDFM FAQ (“ A Little Boy and His BMDFM”) = pme 10 of 38 = http://bmdfm.com

11. How doesBMDFM handle stringsinternally?

BMDFM processes strings in the format similar to the Hollerith string representation using COW-policy (Copy-on-Write).
A string itself always stores its length followed by its contents terminated with a number of zeros aligned to the size of long. A
pointer to the string always points to the string contents making it compatible with the standard null-terminated C-strings:

String format
#define CHR char
#define ULO unsigned long int

Addr High
<ULO string size><string><zero char><zero_char alignment to ULO_size>
~

CHR *string ptr -'

CHR *str0=NULL, *str1=NULL, *str2=NULL;
get_std buff (&str0,"To be or not to be");
get_std buff (&strl, "be");

get_std buff (&str2, "compute") ;

upper (&str0, strtran (&str0,str0,strl,str2));
printf (" %s'\n",stro0) ;

free_string(&stro0) ;

free_string(&strl);

free string(&str2);

\ Example C code using the BMDFM strings

BMDFM strings

The implemented set of the string processing functionsis basically equal to the same set on the FastLisp level:

BMDFM string library

#define CHR char

#define UCH unsigned char
#define SCH signed char
#define USH unsigned short int
#define SSH signed short int
#define ULO unsigned long int
#define SLO signed long int
#define DFL double

CHR *mk_std buff (CHR **buff, ULO size);

CHR *mk_std buff secure(CHR **buff, ULO size);

CHR *mk_fst buff (CHR **buff, ULO size);

CHR *mk_fst buff secure(CHR **buff, ULO size);

CHR *get_std buff (CHR **targ, const CHR *buff);

CHR *get_std buff secure(CHR **targ, const CHR *buff);
UCH notempty (const CHR *string);

ULO len(const CHR *string);

ULO at(const CHR *pattern, const CHR *among) ;

ULO rat(const CHR *pattern, const CHR *among) ;

UCH cmp (const CHR *stringl, const CHR *string2);

SCH cmp_s (const CHR *stringl, const CHR *string2);
CHR *equ (CHR **targ, const CHR *source) ;

CHR *equ_secure (CHR **targ, const CHR *source);

CHR *equ num(CHR **targ, SLO num) ;

CHR *equ_unum(CHR **targ, ULO num) ;

CHR *equ_numhex (CHR **targ, ULO num);

CHR *equ_fnum(CHR **targ, DFL fnum);

CHR *cat (CHR **targ, const CHR *source) ;

CHR *lcat (CHR **targ, const CHR *source) ;

CHR *space (CHR **targ, ULO pos) ;

CHR *replicate(CHR **targ, const CHR *source, ULO num) ;
CHR *left(CHR **targ, const CHR *source, ULO pos) ;
CHR *leftr (CHR **targ, const CHR *source, ULO posr) ;
CHR *right (CHR **targ, const CHR *source, ULO pos) ;
CHR *rightl (CHR **targ, const CHR *source, ULO posl) ;

CHR *ltrim(CHR **targ, const CHR *source);

CHR *rtrim(CHR **targ, const CHR *source);

CHR *alltrim(CHR **targ, const CHR *source) ;

CHR *pack (CHR **targ, const CHR *source) ;

CHR *head (CHR **targ, const CHR *source) ;

CHR *tail (CHR **targ, const CHR *source) ;

CHR *1sp head(CHR **targ, const CHR *source);

CHR *1sp tail (CHR **targ, const CHR *source);

CHR *upper (CHR **targ, const CHR *source);

CHR *lower (CHR **targ, const CHR *source);

CHR *upper utf8(CHR **targ, const CHR *source);
CHR *lower utf8(CHR **targ, const CHR *source);
UCH is_utf8char (const CHR *utf8char);

CHR *ltrim utf8(CHR **targ, const CHR *source);
CHR *rtrim utf8(CHR **targ, const CHR *source);
CHR *alltrim utf8(CHR **targ, const CHR *source) ;
CHR *rev(CHR **targ, const CHR *source) ;

CHR *padl (CHR **targ, const CHR *source, ULO width) ;
CHR *padr (CHR **targ, const CHR *source, ULO width);
CHR *padc (CHR **targ, const CHR *source, ULO width) ;
CHR *strraw(CHR **targ, const CHR *source);

CHR *strunraw(CHR **targ, const CHR *source) ;

CHR *strdump (CHR **targ, const CHR *source) ;

CHR *string time (CHR **targ);

CHR *strings_version(CHR **targ);

CHR *sch2str (CHR **targ, SCH num) ;

CHR *ssh2str (CHR **targ, SSH num) ;

CHR *slo2str (CHR **targ, SLO num) ;

CHR *ptr2str (CHR **targ, void *ptr);

CHR *dfl2str (CHR **targ, DFL num);

SCH str2sch(const CHR *string) ;

SSH str2ssh(const CHR *string);

SLO str2slo(const CHR *string);

void *str2ptr(const CHR *string);

DFL str2dfl(const CHR *string) ;

ULO crcsum(const CHR *string) ;

CHR *free string(CHR **targ);

CHR *substr (CHR **targ, const CHR *source, ULO from, ULO pos) ;
CHR *strtran(CHR **targ, const CHR *source, const CHR *pattern, const CHR *subst);

BMDFM string library

BMDFM FAQ (“ A Little Boy and His BMDFM”)

=Page 11 of 38 =

http://bmdfm.com

12. Why use USER_10?

The direct purpose of BMDFM s fast paralel processing of data. If a specific input/output is required, it can be
implemented as a standalone process providing data to BMDFM and taking processed data from BMDFM through files or
pipes. However, it is not prohibited to implement such a specific input/output within BMDFM itself as user-defined functions
extending the VM. In this case, it is not a big deal to write a couple of C-functions, something like device open(),
device read(), device write() and device close(). If access to such a device does not require having a process-associated
descriptor with stateful data structures behind it, then there is no problem at all — stateless calls to the device will be
synchronized on the BMDFM dataflow engine, and the CPUPROC processes will cooperatively execute the calls. The problem
appears in a situation where the specific input/output requires a process-associated device descriptor having stateful data
structures behind it, thus, the calls must be executed in the same process address space. Exactly for this purpose, the following

VM functions are always executed by the BMDFMIdr process but not CPUPROC processes.

VM functions

(accept <Sval_prompt_message_for_console_or_empty for_stdins)

(scan_console <IVal wait_key forever if 1 or useconds_if positives)

(file_create <SVal_file_name>)

(file_open <SVal_file names)

(file_write <IVal_file_descriptor> <SVal_string_to_be_writtens)

(file_read <IVal_file descriptor> <IVal number_ of bytes_to be_ read>)

(file_seek _beg <IVal_file descriptor> <IVal offset_in bytes_from file beginning>)
(file_seek_cur <IVal_file descriptor> <IVal offset_in bytes_from file current offset>)
(file_seek_end <IVal_file descriptor> <IVal offset_in bytes_from file_end>)
(file_close <IvVal_file descriptors>)

(file_remove <SVal_file_name>)

(user io <IVal user defined integer> <IVal user defined string>)

List of the VM functions executed by BMDFMIdr

Hence, the following pattern is recommended to implement the specific input/output that requires a process-associated

device descriptor:

(setq DEVICE_OPEN (<< 1 20))

(setq DEVICE_READ (<< 2 20))

(setq DEVICE_WRITE (<< 3 20))

(setq DEVICE_CLOSE (<< 4 20))

(setqg XML_data (accept “”)) # input XML chunk

(setqg descr (ival (user_io DEVICE_OPEN “Specific Device: XML”)))
(user_io (| DEVICE_WRITE descr) XML_data)

(setq XML_data (user_io (| DEVICE_READ descr) “"))

(user_io (| DEVICE_CLOSE descr) “”)

XML _data # output XML chunk

#define CHR char
#define SLO signed long int

#define DEVICE_OPEN (SLO) (1<<20)
#define DEVICE_READ (SLO) (2<<20)
#define DEVICE_WRITE (SLO) (3<<20)
#define DEVICE_CLOSE (SLO) (4<<20)

void user_io_callback(SLO usr_id, CHR **usr_buff) {
SLO operation=usr_ id&(0xF<<20), descr=usr_id&OXFFFFF;
switch (operation) {
case DEVICE_OPEN:
equ_num(usr_buff,device_open (usr_buff)); break;
case DEVICE_READ:
get_std_buff (usr_buff,device_read(descr)); break;
case DEVICE_WRITE:
equ_num(usr_buff,device write(descr,usr_buff)); break;
case DEVICE_CLOSE:
equ_num(usr_buff,device_close(descr)) ;
}

return;

USER_IO callback written in C

Specific input/output implemented viaUSER_10

BMDFM FAQ (“ A Little Boy and His BMDFM") = Page 12 of 38 =

http://bmdfm.com

13. How do you implement termcap via USER_10?

The following usage model of termcap that isimplemented via USER_I O works correctly for both fastlisp and BMDFMIdr

when running either VM code or precompiled VM code:

user io 0 "TERMCAP RESET")

setq showcursor_term
setq gotocursor_term

"TERMCAP SHOWCURSOR_TERM"))
"TERMCAP GOTOCURSOR_TERM"))

(

(setqg term_type (user_io 0 "TERMCAP TERM_TYPE"))
(setq lines_term (ival (user_io 0 "TERMCAP LINES_TERM")))
(setq columns_term (ival (user _io 0 "TERMCAP COLUMNS_TERM")))
(setqg clrscr_term (user_io 0 "TERMCAP CLRSCR_TERM")
(setqg reverse_term (user_io 0 "TERMCAP REVERSE_TERM")
(setqg blink term (user_io 0 "TERMCAP BLINK TERM")
(setqg bold_term (user_io 0 "TERMCAP BOLD_TERM"))
(setqg normal_term (user_io 0 "TERMCAP NORMAL_TERM")
(setq hidecursor_term (user_io 0 "TERMCAP HIDECURSOR_TERM"))
((0

((0

Using termcap viaUSER_|O

Here is an implementation example:

USER IO callback written in C
#include <fcntl.h>

#include <termcap.h>

#include <termio.h>

/* #include <termios.h> */

static struct tcap_({

const CHR *TERM_TYPE; /* TERM environment; */

const ULO LINES_TERM; /* number of lines (1i); */

const ULO COLUMNS_TERM; /* number of columns (co); */

const CHR *CLRSCR_TERM; /* clr scr, cursor home (cl); */
const CHR *REVERSE_TERM; /* start reverse mode (mr); */
const CHR *BLINK TERM; /* start blinking (mb); */

const CHR *BOLD_TERM; /* start bold mode (md); */

const CHR *NORMAL TERM; /* end modes like mb,md,mr (me); */

const CHR *HIDECUﬁSORﬁTERM; /* cursor invisible (vi); */
const CHR *SHOWCURSOR_TERM; /* cursor visible (ve); */
const CHR *GOTOCURSOR_TERM; /* cursor move (cm). */
CHR *term type;

ULO lines_term;

ULO columns_term;

CHR *clrscr_term;

CHR *reverse_term;

CHR *blink_term;

CHR *bold_term;

CHR *normal_term;

CHR *hidecursor_term;

CHR *showcursor_ term;

CHR *gotocursor_term;

UCH tcap_initialized;

} tecap={
(CHR*) "ansi.sys", (ULO) 25, (ULO) 80, (CHR*) "\ 033 [m\033 [7h\033 [2J",
(CHR*) "\ 033 [7m", (CHR*)"", (CHR*) "\ 033 [1m", (CHR*) "\ 033 [m", (CHR*)"",
(CHR*) "", (CHR*) "\ 033 [%1%d;%dH", (UCH) 0

}i

void tcap_deinit (void) {
tcap.tcap_initialized=0;
return;

void tecap_init (void) {
CHR *temp=NULL;
char *term data=NULL;
int tty_term;
struct winsize ws;
get_std_buff (&tcap.term type,tcap.TERM_TYPE) ;
tcap.lines_term=tcap.LINES_TERM;
tcap.columns_term=tcap.COLUMNS_TERM;
get_std _buff (&tcap.clrscr_term, tcap.CLRSCR_TERM) ;
get_std_buff (&tcap.reverse_term, tcap.REVERSE TERM) ;
get_std_buff (&tcap.blink_term, tcap.BLINK_TERM) ;
get_std_buff (&tcap.bold term, tcap.BOLD_TERM) ;
get_std_buff (&tcap.normal_term, tcap.NORMAL_TERM) ;
get_std_buff (&tcap.hidecursor_term, tcap.HIDECURSOR_TERM) ;
get_std buff (&tcap.showcursor_ term, tcap.SHOWCURSOR_TERM) ;
get_std _buff (&tcap.gotocursor_term, tcap.GOTOCURSOR_TERM) ;
get_std_buff (&temp,getenv ("TERM")) ;
if (len(temp))
equ (&tcap.term_type, temp) ;
if (0<(signed) tgetent (NULL, tcap.term_type)) {
if ((tty_term=open("/dev/tty",0))<0) {
tty term=2;
ioctl(tty term, TIOCGWINSZ, &ws) ;

elsef
ioctl(tty term, TIOCGWINSZ, &ws) ;
close (tty_term);

if ((tcap.lines_term= (ULO)ws.ws_row)<=0)
tcap.lines_term=tcap.LINES_TERM;

if ((tcap.columns_term= (ULO)ws.ws_col) <=0
tcap.columns_term=tcap.COLUMNS_TERM;

if (tgetstr((char*)"cl", &term_data) ! =NULL)
get_std_buff (&tcap.clrscr_term, term_data) ;

if (tgetstr ((char*)"mr", &term_data) ! =NULL)
get_std_buff (&tcap.reverse_term, term data);

if (tgetstr ((char*)"mb", &term_data) ! =NULL)
get_std_buff (&tcap.blink_term,term data) ;

if (tgetstr ((char*)"md", &term_data) ! =NULL)
get_std_buff (&tcap.bold term,term data);

if (tgetstr((char*)"me", &term data) !=NULL)
get_std_buff (&tcap.normal_term, term data);

if (tgetstr((char*)"vi", &term_data) ! =NULL)
get_std_buff (&tcap.hidecursor_ term,term data) ;

if (tgetstr((char*)"ve", &term data) !=NULL)
get_std_buff (&tcap.showcursor term,term_data) ;

if (tgetstr((char*)"cm", &term_data) ! =NULL)
get_std_buff (&tcap.gotocursor_term, term data) ;

free((void*)term data) ;

free_string(&temp) ;
tcap.tcap_initialized=1;
return;

}

void user_io_callback(SLO usr_id, CHR **usr_buff) {
CHR *temp=NULL, *templ=NULL, *temp2=NULL;
equ (&temp, *usr_buff) ;
if (cmp (head (&temp2, temp) ,get_std_buff (&templ, "TERMCAP"))) {
tail (&templ, temp) ;
while (1) {
if (cmp (templ,get_std_buff (&temp, "RESET"))) {
tcap_deinit () ;
space (usr_buff,0) ;
break;

if (!tcap.tcap_initialized)
tecap_init();

if (cmp (templ,get_std buff (&temp, "TERM_TYPE"))) {
equ (usr_buff, tcap.term type) ;
break;

}

if (cmp (templ,get_std_buff (&temp, "LINES_TERM"))) {
equ_num(usr_buff, (SLO) tcap.lines_term) ;
break;

if (cmp (templ,get_std_buff (&temp, "COLUMNS_TERM"))) {
equ_num (usr_buff, (SLO) tcap.columns_term) ;
break;

}

if (cmp (templ,get_std_buff (&temp, "CLRSCR_TERM"))) {
equ (usr_buff, tcap.clrscr_term);
break;

}

if (cmp (templ,get_std_buff (&temp, "REVERSE_TERM"))) {
equ (usr_buff, tcap.reverse_term);
break;

if (cmp (templ,get_std_buff (&temp, "BLINK_TERM"))) {
equ (usr_buff,tcap.blink term);
break;

}

if (cmp (templ,get_std_buff (&temp, "BOLD_TERM"))) {
equ (usr_buff, tcap.bold term) ;
break;

}

if (cmp (templ,get_std_buff (&temp, "NORMAL_TERM"))) {
equ (usr_buff, tcap.normal_term);
break;

if (cmp (templ,get_std_buff (&temp, "HIDECURSOR_TERM"))) {
equ (usr_buff, tcap.hidecursor_term) ;
break;

}

if (cmp (templ,get_std_buff (&temp, "SHOWCURSOR_TERM"))) {
equ (usr_buff, tcap.showcursor_term) ;
break;

}

if (cmp (templ,get_std_buff (&temp, "GOTOCURSOR_TERM"))) {
equ (usr_buff, tcap.gotocursor_term) ;
break;

break;

free_string(&temp) ;
free_string(&templ) ;
free_string(&temp2) ;
return;

}

Implementation of termcap viaUSER_1O

BMDFM FAQ (“ A Little Boy and His BMDFM") = Page 13 of 38 =

http://bmdfm.com

14. How do you evaluate the VM language expressions from C/C++ code?

The best way is to call mapcar function giving the artificially generated byte code preamble to its input. Mapcar accepts
both VM language source and VM byte code. So, the idea of a byte code caching can be used to avoid redundant recompilation
of the frequently evaluated expressions. The following approach will work correctly for both single-threaded and multithreaded
BMDFM engines:

Evaluation of the VM language expressions from C/C++ code

#define CHR char
#define ULO unsigned long int
#define SLO signed long int

extern void
extern void

func__mapcar (const ULO¥*,
func__dummy_s (const ULO*,

struct fastlisp_data*);
struct fastlisp_data*);

#ifndef POSIXMTHREAD_ NOT_ SUPPORTED
__thread
#endif
struct{
CHR *flp_expr;
CHR *bytecode;
} flpeval_cache={NULL,NULL};
CHR flp_eval (CHR *flp_expr, struct fastlisp data *ret_dat) {
CHR success=0, *flp fnc=NULL, *temp=NULL;
struct fastlisp data res={1,1,0,0,{0},NULL,1,NULL, {NULL}};
get_std_buff (&flp_fnc, flp_expr) ;
if (notempty (flp_fnc) &&cmp (f1p_fnc, flpeval_cache.flp_expr))
equ(&flp_fnc, flpeval cache.bytecode) ;
lcat (&flp_fnc,slo2str (&temp,len(flp_fnc)));
lcat (&flp_fnc,ptr2str (&temp, (void*)&func_ dummy_s)) ;
lcat (&flp_fnc, temp) ;
* ((CHR**) f1p_fnc) =flp_fnc+sizeof (ULO) ;
func__mapcar ((ULO¥*) flp_fnc, &res) ;
if ((res.array.mix+2)->value.ival|| (res.array.mix+4)->value.ival)
copy_flp_data(ret_dat, &res,0);
else{
copy_flp data(ret_dat,res.array.mix+1,0);
get_std_buff (&flpeval cache.flp expr, flp expr);
equ (&flpeval_cache.bytecode, (res.array.mix+8) ->svalue) ;
success=1;

free_ flp_data(&res) ;
free_string(&flp_fnc) ;
free_string(&temp) ;
return success;

/* Pattern example for a caller: */

SLO addr;

struct fastlisp data res={1,1,0,0,{0},NULL,1,NULL, {NULL}};

if (f1lp_eval (" (asyncheap_create 1024)",&res))
addr=res.value.ival;

free flp data(&res);

Evaluation of the VM language expressions from C/C++ code

Here is an implementation of termcap viaUSER_| O that calls VM language from C code:

USER IO callback written in C that calls VM language

/* The BMDFMldr module is capable of invoking/evaluating VM language
expressions from C/C++ code (1-Capable;0-Unable).*/
UCH BMDFMldr capable call VMcode_ from C=1;

void user_io_callback (SLO usr_id, CHR **usr_buff) {
CHR *temp=NULL, *templ=NULL, *temp2=NULL;
struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL, {NULL}};
equ (&temp, *usr_buff) ;
if (cmp (head (&temp2, temp) ,get_std_buff (&templ, "TERMCAP"))) {
tail (&templ, temp) ;
while (1) {
if (cmp (templ,get_std _buff (&temp, "TERM_TYPE"))
| |cmp (templ,get_std buff (&temp, "CLRSCR_TERM"))
| |cmp (templ,get_std buff (&temp, "REVERSE_TERM"))
| |cmp (templ,get_std buff (&temp, "BLINK_TERM"))
| |cmp (templ,get_std_buff (&temp, "BOLD_TERM"))
| | cmp (templ,get_std buff (&temp, "NORMAL_TERM"))
| [cmp (templ,get_std buff (&temp, "HIDECURSOR_TERM"))
| [cmp (templ,get_std buff (&temp, "SHOWCURSOR_TERM"))) {
lcat (&temp, sch2str (&temp2, ' (')) ;
cat (&temp, sch2str (&temp2,') ")) ;
flp eval (temp, &res) ;
equ (usr_buff, res.svalue) ;
break;

if (cmp (templ,get_std buff (&temp, "LINES_TERM"))
| | cmp (templ,get_std buff (&temp, "COLUMNS_TERM"))) {
lcat (&temp, sch2str (&temp2,' (")) ;
cat (&temp, sch2str (&temp2, ') ")) ;
flp eval (temp, &res) ;
equ_num(usr_buff,res.value.ival) ;
break;

if (cmp (templ,get_std _buff (&temp, "GOTOCURSOR_TERM")))

flp_eval (" (gotocursor_term -1 -1)",&res);
equ (usr_buff, res.svalue) ;
break;

}

if (cmp (templ,get_std_buff (&temp, "RESET"))) {
flp eval (" (reinit_terminal \"\")", &res);

equ (usr_buff, res.svalue) ;

break;
}
}
free_string(&temp) ;
free_string(&templ) ;
free_string(&temp2) ;
free_flp data(&res);

return;
}
VM code
(user_io 0 "TERMCAP RESET")
(setq term_type (user_io 0 "TERMCAP TERM TYPE"))
(setg lines_term (ival (user_io 0 "TERMCAP LINES_TERM")))
(setg columns_term (ival (user_io 0 "TERMCAP COLUMNS_TERM")))
(setg clrscr_term (user_io 0 "TERMCAP CLRSCR_TERM")
(setg reverse_term (user_io 0 "TERMCAP REVERSE_TERM")
(setg blink_term (user_io 0 "TERMCAP BLINK TERM")
(setq bold_term (user_io 0 "TERMCAP BOLD_TERM"))
(setqg normal_term (user_io 0 "TERMCAP NORMAL_ TERM")
(setqg hidecursor_term (user_io 0 "TERMCAP HIDECURSOR_TERM"))
(setqg showcursor_term (user_io 0 "TERMCAP SHOWCURSOR_TERM"))
(setg gotocursor_term (user_io 0 "TERMCAP GOTOCURSOR_TERM"))

Implementation of termcap viaUSER_| O that callsVM Ianguagefrofn C code

BMDFM FAQ (“ A Little Boy and His BMDFM”)

=Page 14 of 38 =

http://bmdfm.com

15. How do you allocate/free shared memory from C/C++ code?

The standard calls to malloc() and free() will not target the Shared Memory Pool. One of the possible solutions is to
evaluate the "(asyncheap_create ...)" and "(asyncheap delete ...)" fastlisp expressions from C/C++ code. However, the direct
calls to the asyncheap create() and asyncheap_delete() implementations will run faster. The following approach will work
correctly for both single-threaded and multithreaded BMDFM engines. The shared memory will be automatically freed after an
external task is detached from the BMDFM server:

Shared memory operations from C/C++ code

/* Pure C */

#define CHR char

#define ULO unsigned long int
#define SLO signed long int

#ifdef _TO_BE_LINKED_AGAINST_ CPUPROC_

#define FLP_MALLOC par_func__asyncheap create j

#define FLP_FREE par_func__asyncheap delete_j
#else

#define FLP_MALLOC func__asyncheap_create_j

#define FLP_FREE func_ asyncheap_delete_j
#endif /* or do the module check at runtime

using am I_in_the CPUPROC module () */

extern void FLP_MALLOC (const ULO*, struct fastlisp_data¥*);
extern void FLP_FREE (const ULO*, struct fastlisp data*);
extern void func__dummy_i(const ULO*, struct fastlisp_data*);

void *£lp_malloc (SLO bytes) {
CHR *flp fnc=NULL, *temp=NULL;
SLO addr;
struct fastlisp data res={1,1,0,0,{0},NULL,1,NULL, {NULL}};
slo2str (&flp_ fnc,bytes) ;
lcat (&flp_fnc,ptr2str (&temp, (void*)&func_ dummy i)) ;
lcat (&flp_fnc, temp) ;
* ((CHR**) flp_fnc)=flp_fnc+sizeof (ULO) ;
FLP_MALLOC ((ULO*) f1p_fnc, &res) ;
addr=res.value.ival;
free flp data(&res);
free_string(&flp_fnc) ;
free_string(&temp) ;
return (void*)addr;
}
void flp_free(SLO addr) {
CHR *flp fnc=NULL, *temp=NULL;
struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL, {NULL}};
slo2str (&flp_fnc,addr) ;
lcat (&flp_fnc,ptr2str (&temp, (void*)&func_ dummy 1)) ;
lcat (&flp_fnc, temp) ;
* ((CHR**) flp_fnc)=flp_fnc+sizeof (ULO) ;
FLP_FREE ((ULO*) f1p_fnc, &res) ;
free flp data(&res);
free_string(&flp_fnc) ;
free_string(&temp) ;
return;

// Pure C++
#define SLO signed long int

// Use pattern for the class:

// foo *fooO=new foo,*fool=new fool[2];
// delete foo00;

// delete[] fool;

class foo{

public:
foo() ;
~foo() ;
void *operator new(size_t size) throw (const char¥*);
void *operator newl[] (size_t size) throw (const char¥);
void operator delete(void *p);
void operator deletel[] (void *p);

}i

foo::foo () {
}
foo::~foo () {

void *foo::operator new(size_t size) throw (const char*){
void *ptr=£flp malloc ((SLO)size) ;
if (ptr==NULL)
throw "Allocation failure.";
return ptr;

}

void *foo::operator new(] (size_t size) throw (const char*){
void *ptr=flp malloc ((SLO)size) ;
if (ptr==NULL)
throw "Allocation failure.";
return ptr;

void foo::operator delete (void *ptr) {
flp_free((SLO)ptr) ;
return;

}

void foo::operator deletel] (void *ptr) {
flp_free((SLO)ptr) ;
return;

BMDFM FAQ (“ A Little Boy and His BMDFM”)

Shared memory access from C/C++ code

The similar strategy can be applied to other asyncheap functions. Use the standard nm utility to check the correct names of
the functions you would like to link against:

$ nm fastlisp.o
Symbols from fastlisp.o:
Name Value Class Type Size Line Section
func__asyncheap_create |00000000000171d8| T | FUNC |00000000000000ec| | .text
func__asyncheap_create_j |00000000000172c4| T | FUNC [0000000000000100 | | .text
func__asyncheap_delete |0000000000018bac| T | FUNC [00000000000000fc| | .text
func__asyncheap_delete j |0000000000018ca8| T | FUNC [0000000000000110 | | .text
func__asyncheap_reallocate |000000000001864c| T | FUNC [000000000000014c| | .text
func__asyncheap_reallocate_j |0000000000018798| T | FUNC |[0000000000000180 | | .text
func__asyncheap_replicate |0000000000018918| T | FUNC [0000000000000140 | | .text
func__asyncheap_replicate_j |0000000000018a58| T | FUNC |[0000000000000154 | | .text
$ nm CPUPROC.o
Symbols from CPUPROC.o:
Name Value Class Type Size Line Section
par_func__asyncheap_create |000000000002bd8c| T | FUNC |000000000000020c| | .text
par_func__asyncheap_create_j |000000000002b£98| T | FUNC [000000000000021c| | .text
par_func__asyncheap_delete |000000000002e8fc| T | FUNC [00000000000001£8 | | .text
par_func__asyncheap_delete_j |000000000002eaf4| T | FUNC |[0000000000000208 | | .text
par_func__asyncheap_reallocate |000000000002ddd4| T | FUNC [000000000000027c| | .text
par_func__asyncheap_reallocate_j |000000000002e050| T | FUNC |[00000000000002ac| | .text
par_func__asyncheap_replicate |000000000002e2fc| T | FUNC [00000000000002£8 | | .text
par_func__asyncheap_replicate_j |000000000002e5f4| T | FUNC |0000000000000308]| | .text
LN
Termina

=Page 15 of 38 =

http://bmdfm.com

16. How do you attach to the BMDFM shared memory and allocate per manent data there?

An external application may attach and access the BMDFM shared memory using the following direct shared memory pool

interface. The fol

Direct share

lowing example demonstrates this:

#define CHR char
#define UCH unsi
#define ULO unsi

extern UCH attac:

d memory pool interface

extern void *reallocpool (void *ptr, ULO size);
gned char extern void freepool (void *ptr);
gned long int extern ULO getalignedsizepool (void *ptr) ;

extern void addmcastrefpool (void *ptr) ;
h_mempool (int sharedID, ULO mntaddr) ;

extern UCH detach mempool (void) ; extern CHR *shmempoolLUT add_key value(CHR **value, const CHR *key);
extern CHR *shmempoolLUT del key value (CHR **key);

extern void shmempool on(void) ; extern CHR *shmempoolLUT get value(CHR **value, const CHR *key);

extern void shmempool off (void); extern CHR *shmempoolLUT get entire contents (CHR **contents);

extern UCH is_shmempool on(void) ; extern void shmempoolLUT purge entire_contents (void) ;

Direct shared memory pool interface

C code: an external applica
int main(int argc, char *argvl[])
CHR *BM_DFM_CONNECTION_FILE path=NULL, *info=NULL, *temp=NULL, *templ=NULL,
*lut_key=NULL, *1ut_value=NULL;
ULO mntaddr;
int f_descr, sharedID;
struct _entry point_struct{
CHR *str0;
CHR *strl;
CHR *strN;
} entry point_struct={NULL,NULL,NULL}, *entry_ point_struct_ptr;

on allocates permanent data in the ShMemPool

if ((BM_DFM_CONNECTION_FILE path=getenv ("BM_DFM_CONNECTION_FILE path"))==NULL)
BM_DFM_CONNECTION_ FILE path=(CHR*)"/tmp/.BMDFMsrv";

if ((f_descr=open (BM_DFM_CONNECTION_FILE_path,0))==-1)
fprintf (stderr, "Fail opening file “%s'.\n",BM_DFM_CONNECTION_FILE_path) ;
exit (1) ;

}

mk_fst_buff (&info,1024) ;

read (f_descr, (void*)info,1024) ;

close (f_descr) ;

if (lcmp (left (&temp, info,9),get_std_buff (&templ, "BMDFMsrv "))) {
fprintf (stderr," %s' is not the BM_DFM connection file.\n",

BM_DFM_CONNECTION FILE path);

exit (1) ;

tail (&info, info) ;
head (&temp, info) ;
tail (&info, info) ;
sharedID= (int)atoi (temp) ;
head (&temp, info) ;
mntaddr= (ULO) atol (temp) ;

shmempool_on () ;

if (lattach_mempool (sharedID,mntaddr)) {
fprintf (stderr, "Cannot attach the shared memory pool.\n");
exit (1) ;

if ((entry_point_struct_ptr=(struct _entry point_struct*)reallocpool (NULL,

sizeof (struct _entry point_struct)))==NULL) {
fprintf (stderr, "Memory allocation in the shared memory pool failed.\n");
exit (1) ;

get_std buff secure(&entry point_struct.str0,"String 0: I am in ShMemPool.");
get_std buff secure(&entry point_struct.strl,"String 1: I am in ShMemPool.");
get_std buff secure(&entry point_struct.strN,"String N: I am in ShMemPool.");
*entry point_struct_ptr=entry point_struct;

// Allocated entries are persistent.

// Keep entry point_struct_ptr somehow available for others, e.g.:
// shmempool off () ;

// get_std buff (&lut_key, "Key for our test allocations");

// equ_num(&lut_value, (SLO)entry point_struct_ptr);

// shmempool_on () ;

// shmempoolLUT_add key value(&lut_value, lut_key) ;

// shmempool off () ;

// A consumer can initialize entry point_struct_ptr like:

// shmempool off () ;

// get_std _buff (&lut_key, "Key for our test allocations");

// shmempool_on () ;

// shmempoolLUT get_value (&lut_value, lut_key) ;

// shmempool off () ;

// entry_point_struct_ptr=(struct _entry point_struct*)atol (lut_value) ;

shmempool_on () ;

if (1detach mempool ()) {
fprintf (stderr, "Cannot detach the shared memory pool.\n");
exit (1) ;

shmempool off () ;

return O0;

Add the code to your cflp_udf.c. Link against one of BMDFMIdr.o, BMDFMsrv.0o, CPUPROC.o like e.g.:

An external application allocates permanent data in the ShMemPool

e gcc-0MyProg cflp_udf.c CPUPROC.0 -Ipthread -Im

BMDFM FAQ (“ A Little

Boy and His BMDFM”) = Page 16 of 38 =

http://bmdfm.com

17. What isthe optimal number of the BMDFM processes?

Basicaly, the optimal number of the BMDFM processes (of each kind) is equal to the number of available system
processors multiplied by 2. Recent server processors are very often the multi-core processors. Therefore, it is better to set the
number of the BMDFM processes according to the number of cores or processing units.

However, it is important to know that CPUPROC processes mainly execute user code, | ORBPROC processes run required
dynamic scheduling routines and OQPROC processes perform speculative (somehow a little redundant) dynamic scheduling of
dataflow instructions.

Suppose a user has one dedicated virtual partition on an IBM SMP mainframe based on the POWER architecture. This
partition has 2 dedicated MCM (Multi-Chip Modules) having 4 processors per module and 16 cores per processor with ability
to run 8 threads simultaneously on each core. Hence, the number of processing units is 2*4* 16*8=1024, the following settings
are recommended for such configuration:

BMDFMsrv.cfg

N_CPUPROC = 2048 # Number of CPU PROCs
N IORBPPROC = 2048 # Number of IORBP PROCs
N OQPROC = 2048 # Number of OQ PROCs

Settings for 1024 processing units

These mnemonic rules could be a good starting point for the initial settings. Later on, the number of the BMDFM processes
can be experimentally tuned depending on application class and architecture of the SMP interconnections.

Note that the multithreaded mode can be configured as well (might be good for multicores and many-cores or for sharing
objects in the process address space rather than in the shared memory pool):

BMDFMsrv.cfg

CPUPROC_MTHREAD
OQPROC_MTHREAD
IORBPPROC_MTHREAD
BMDFMLDR MTHREAD

Yes # CPU PROC is multithreaded
Yes # OQ PROC is multithreaded
Yes # IORBP PROC is multithreaded
Yes # BMDFMldr is multithreaded

Settings for multithreaded mode

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 17 of 38 = http://bmdfm.com

18. How do you implement a parallel recursive Fibonacci function?

Fibonacci numbers are the integer sequence produced by the following relationship:

Recursive Fibonacci algorithm (pseudo-code)
Fibonacci (0)
Fibonacci (1)
Fibonacci (N)

1
Fibonacci (N - 1) + Fibonacci (N - 2);

Recursive Fibonacci algorithm

Thus, the Fibonacci sequenceis: 0,1, 1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, . . .

Firstly, we implement a seamless single-threaded recursive Fibonacci function that is about to be added into the BMDFM
configuration profile (or an aternative implementation in C):

Seamless single-threaded recursive Fibonacci implementation (VM code)

(defun FibonacciSeamless # to be placed into .cfg
(progn
(setg n (+ 0 s$1))
(if (< n 2)
n
(+ (FibonacciSeamless (-- n))
(FibonacciSeamless (- n 2))

Seamless single-threaded recursive Fibonacci (alternative C-implementation)

#define ULO unsigned long int
#define SLO signed long int

SLO _dffib FibonacciSeamless (SLO n) {
return noterror () &&n>1?_dffib_FibonacciSeamless (n-1)+_dffib_FibonacciSeamless (n-2) :n;

void dffib_FibonacciSeamless (const ULO *dat_ptr, struct fastlisp_data *ret_dat) {

SLO n;
ret_ival (dat_ptr,&n) ;
if (noterror()) {

ret_dat->single=1;
ret_dat->type='I"';
ret_dat->value.ival=_dffib FibonacciSeamless (n) ;

}

return;

INSTRUCTION_STRU INSTRUCTION_SET[]={
{"FIBONACCISEAMLESS",1, 'I', (UCH*)"I",6 &dffib FibonacciSeamless}

Seamless single-threaded recursive Fibonacci implementation

And then, we write a simple trivial implementation of our parallel multithreaded recursive Fibonacci function into the
Fibonacci.flp file (note that we need neither special paralléelization directives nor special reserved function names; we have
“wrapped” the Fibonacci Seamless function with the FibonacciCoordinator function in order to limit “unlimited parallelism”):

Parallel multithreaded recursive Fibonacci implementation (VM code)

(defun FibonacciCoordinator # to be placed into .flp
(progn
(setg n (+ 0 s$1))
(setqg spawn (+ 0 $2))
(if (< n 2)

n
(if (> spawn 0)
(+ (FibonacciCoordinator (-- n) (>> spawn 1))
(FibonacciCoordinator (- n 2) (>> spawn 1))
)
(+ (FibonacciSeamless (-- n))
(FibonacciSeamless (- n 2))

)
)
)
)
)

(defun Fibonaceci
(progn
(setg n (+ 0 $1))
(setg spawn (n_cpuproc))
(FibonacciCoordinator n spawn)
)
)

main() begins here
(setg n (+ 0 $1))
(Fibonacci n)

Fibonacci.flp containing parallel multithreaded recursive Fibonacci implementation

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 18 of 38 = http://bmdfm.com

19. How do you rewrite application example from the BMDFM manual in pure VM language?

The application example from the BMDFM manual can be rewritten using e.g. asynchronous heaps:

fastlisp.cfg/BMDFMsrv.cfg
(defun dhtpipe0_generate # $l=array,
(progn
(setq array (+ 0 $1))
(setg n (+ 0 $2))
(setg m (+ 0 $3))
(setg m_1 (-- m))
(setg n_1 (-- n))
(for i 01 n_1
(for 3 01 m 1
(asyncheap_putfloat array (*+ m i j)
)
)
array
)
)

$2=n, $3=m.

(frnd 1.))

(defun dhtpipe0_dht # $l=target_array,
$4=source_array.

$2=n, $3=m,

(progn
(setqg target_array (+ 0 $1))
(setg n (+ 0 $2))
(setg m (+ 0 $3))
(setq source_array (+ 0 $4))
(setg c1 (/. (*. 2. (pi)) n))
(setg s1 (/. (*. 2. (pi)) m))
(setg m_1 (-- m))
(setg n_1 (-- n))

(for p 0 1 n_1
(for g 0 1 m_1 (progn
(setqg s 0.)

(for 1 01 n_1
(for 3 01 m 1
(setg s (*+.
(*+ m i 3))
q3)))) s))

(asyncheap_getfloat source_array
(cas (*+. cl (*. p i) (*. sl

)
)
(asyncheap_putfloat target_array (*+ m p q)
))
)
target_array

)

s)

(progn
(outf
"Pipeline calculation of the 2D nonseparative Hartley
(setg m (ival (accept "M-value of M*N-matrix: ")))
(setg n (ival (accept "N-value of M*N-matrix: ")))
(setg numb (ival (accept "How many input data packs:
(setqg arrays_size (* (* m n) (len (dump_f2s 0.))))
(for i 1 1 numb (progn
(outf "Sequence %1d:"
1.
(setq inp_array sync (& 0

i

))

2.

(setq inp_array sync (& 0
(setq inp_array_addr

))
3.
(setq dht_array_sync (& 0

))

4.

(setqg dht_array_sync (setqg inp_array sync (& O
(setqg dht_array_addr

)))
5.
(setq idht_array_sync (& 0

))

6.

(setqg idht_array sync (setq dht_array sync (& O
(setqg idht_array_addr

)))

7.

(setqg inp_array_sync (setqg idht_array_ sync (& 0
(setqg cmp_res

)))

(outf " %s.\n" (if cmp_res "Fail" "Ok"))

8.
(asyncheap_delete (| inp_array_sync inp_array addr)
(asyncheap_delete (| dht_array_sync dht_array_addr)

(*.

)
dhtpipel. flp |
"))

(setq inp_array addr (asyncheap_create arrays_size)

(dhtpipe0_generate (| inp_array sync inp_array addr) n m))

(setq dht_array addr (asyncheap_create arrays_size)

(dhtpipe0_dht (| dht_array sync dht_array addr) n m inp_array_addr)

(setq idht_array_addr (asyncheap_create arrays_size)

(dhtpipe0_idht (| idht_array sync idht_array_addr) n m dht_array addr)

(dhtpipe0_compare inp_array addr idht_.

(asyncheap_delete (| idht_array_sync idht_array addr)

(defun dhtpipe0_idht # $l=target_array, $2=n, $3=m, $4=source_array.
(progn
(setqg target_array (+ 0 $1))
(setg n (+ 0 $2))
(setg m (+ 0 $3))
(setq source_array (+ 0 $4))
(setg c1 (/. (*. 2. (pi)) n))
(setg s1 (/. (*. 2. (pi)) m))
(setg m_1 (-- m))
(setg n_1 (-- n))

(for p 0 1 n_1
(for g 0 1 m_1 (progn
(setg s 0.)
(for i 0 1 n_1
(for 3 01 m 1
(setg s (*+.
(cas (*+.

(asyncheap_getfloat source array (*+ m i j))
cl (*. p i) (*. sl (*. g 3)))) s))

)
)

(asyncheap_putfloat target_array (*+ mp q) (/. (/. s n) m))
:)
target_array
:)
(defun dhtpipe0_compare # S$l=array0, S$2=arrayl, $3=n, $4=m.

(progn
(setqg array0 (+ 0 $1))
(setq arrayl (+ 0 $2))
(setg n (+ 0 $3))

(setg m (+ 0 $4))

(]| (> (fabs (-. (asyncheap_getfloat array0 0) (asyncheap_ getfloat
arrayl 0))) le-10) (> (fabs (-. (asyncheap getfloat array0 (*+ m
(-- n) (-- m))) (asyncheap getfloat arrayl (*+ m (-- n) (-- m))))
le-10))

transform.\n\n" 0)

array_addr n m))

fastlisp.cfg/BMDFMsrv.cfg and dhtpipe0.flp

BMDFM FAQ (“ A Little Boy and His BMDFM”)

= Page 19 of 38 = http://bmdfm.com

20. How do you enable parallel reduction operation?

Suppose that we have the following parallel code with sequential accumulative operation e.g. string concatenation:

Sequential concatenations (VM code)

HHHHEHEHHEHERHEEEEHEEHEEEEHHEHEEEEHHEHEEEEHHEHEEERHHEHHEHRHHEHHEHEHEE R R
Concatenation is sequential:

+*
+*

B - Sequential---------------ommomoeoo oo | #
((((((((str0 1+ strl) 2+ str2) 3+ str3) 4+ str4) 5+ str5) 6+ str6) 7+ str7) 8+ str8)
#

H

Total sequential concatenations:
##

(setg iterations 8)
(setg result "")

(for k 0 1 iterations (progn
(setqg string (generate substr k)) # generation of each string part runs in parallel
(setq result (cat result string)) # concatenations of each string part run sequentially

))

Concatenations run sequentially

In order to run our sequential concatenation operations in parallel, we split our main iteration loop into two loops. outer
loop and inner nested loop dividing the entire iteration range into N of M-subranges where N and M are square root of the total
number of iterations. Thus, each subrange will be independent in the dataflow graph and will be computed in parallel to other
subranges:

Parallel concatenations after applying reduction (VM code)

Concatenation is parallel after applying reduction:
#
#o|---oeo-- Sequential--------- | #
((((str0 1+ strl) 2+ str2) |----- Parallel----- |
3+
((str3 1+ str4) 2+ stxb5)) |----- Parallel----- |
4+
((str6 1+ str7) 2+ str8)) |----- Parallel----- |
#
#

(setg iterations 8)
(setg result "")

(setqg rsize (++ (ival (sgrt iterations)))) # rsize is 3

(for k_ 0 rsize iterations (progn

(setq result_ "")
(setqg kk (-- (if (> (+ k_ rsize) iterations) iterations (+ k_ rsize))))
(for k k_ 1 kk (progn
(setqg string (generate substr k)) # generation of each string part runs in parallel

(setq result_ (cat result_ string)) # concatenations of the subrange run sequentially
))
(setq result (cat result result)) # subranges run in parallel

))

Concatenations run in parallel after applying reduction

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 200of 38 = http://bmdfm.com

21. How do you find out runtime error location in expression typed on BMDFM Server console?

In case of aruntime error, the error location in the user application code can be identified by using -sd or --showDebugl nfo
command line option. However, if an error-prone expression is typed directly on the BMDFM Server console, only a Dbg
location number is shown. In seldom cases where the typed expression might be quite long, the exact error location can be hard
to identify:

BMDFM Server console input (VM code)
(progn (defun foo (++ a)) (foo))
BMDFM Server console output

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Fnc=Main:FOO; Dbg=136;
Var=Aa)

BMDFM Server console output (when env. var. is set: export BM DFM COMPILE WITH DEBUGINFO=0;)

[RunTimeErrCode=10] Variable getval: variable was not initialized before use! (Dbg=88; Var=1)

Input/Output on the BMDFM Server console

A solution is to type the expression as an argument of mapcar function (see description of mapcar function in the
documentation). Note that Dbg location number can change (Dbg=136 vs. Dbg=152) because the bytecode debug info also
stores (memory-aligned) function names (Main: FOO vs. Main_Mapcar:FOO).

BMDFM Server console input (VM code)

Input O: (progn (setq m_out (mapcar "(progn (defun foo (++ a)) (foo))")) (index m out 5)

Input 1: (progn (setqg m_out (mapcar "(progn (defun foo (++ a)) (foo))")) (index m_out 10)

BMDFM Server console output

Output 0: Variable_getval: variable was not initialized before use! (Fnc=Main Mapcar:F00; Dbg=152;
Var=3)

Output 1: (PROGN (DEFUN FOO (++ (REM Dbg=144) A (REM Dbg=152))) (REM Dbg=176) (F00))

BMDFM Server console output (when env. var. is set: export BM DFM COMPILE WITH DEBUGINFO=0;)

Output 0: Variable_getval: variable was not initialized before use! (Dbg=88; Var=1)

Output 1: (PROGN (DEFUN Udf_1 (++ (REM Dbg=80) Var_1 (REM Dbg=88))) (REM Dbg=112) (Udf_1))

Input/Output on the BMDFM Server console

Runtime error tracking can aso be automated by adding new function into the BMDFM Server configuration profile:

BMDFM Server configuration profile (VM code)

(defun flp
(progn

(alsetq ran (mapcar $1)

(setqg output (index ran 0))

(if (index ran 2)
(cat output (cat (str_fmt "[Syntax error %1d]: " (index ran 2)

(index ran 3)))

(if (index ran 4)

(cat output (cat (str_fmt "[Run-time error %1dl: " (index ran
4)) (cat (index ram 5) (cat " " (index ran 10)))))
(progn

(alsetqg res (index ran 1)

(if (> (indices res) 1)
(cat output (format_ list_ 4print res))
(cat output (cat "" res))

Runtime error tracking function in the BMDFM Server configuration profile

Now, we will get the following error message when typing our expression as an argument of our new flp function:

BMDFM Server console input (VM code)
BMDFM Server console output

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Fnc=Main Mapcar:FOO;
Dbg=152; Var=A) (PROGN (DEFUN FOO (++ (REM Dbg=144) A (REM Dbg=152))) (REM Dbg=176) (FOO))

BMDFM Server console output (when env. var. is set: export BM DFM COMPILE WITH DEBUGINFO=0;)

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Dbg=88; Var=1l) (PROGN
(DEFUN Udf_1 (++ (REM Dbg=80) Var_ 1 (REM Dbg=88))) (REM Dbg=112) (Udf_1))

I nput/Output on the BMDFM Server console

BMDFM FAQ (“ A Little Boy and His BMDFM”) = pme 21 0of 38 = http://bmdfm.com

22. How seriousisthe performance degradation of pureunparalleled VM byte code?

For the performance test, a test program was rewritten in pure ANSI C, in Java and in the native VM language. This
testbench comes from the area of discrete trigonometric transformations, namely the “2D non-separate Hartley transform”. Full
source code can be found in the BMDFM distribution package. Below, only fragments of the code are given for comparison:

Pure ANSI C code fragment (testbench.c)

void dht (DFL *target_array, SLO n, SLO m, DFL *source_array){
SLO i,3,p,q;
DFL pi,cl,sl,sum,tmp;
pi=3.1415926535897932;
cl=2*pi/n;
sl=2*pi/m;
for (p=0;p<n;p++)
for (q=0;q<m; q++) {
sum=0;
for(i=0;i<n;i++)
for(j=0;j<m;Jj++)
sum+= (* (source_array+i*m+j) * (cos (tmp=cl*p*i+sl*qg*j)+sin(tmp))) ;
* (target_array+p*m+q) =sum;

return;

}
Java VM code fragment (testbench.java)

public static void dht(double target_arrayl[], int n, int m,
double source_array(]){
int i,3,p,q;
double pi,cl,sl,sum,tmp;
pi=3.1415926535897932;
cl=2*pi/n;
s1=2%pi/m;
for (p=0;p<n;p++) {
for (g=0;g<m;g++) {
sum=0;
for(i=0;i<n;i++) {
for (§=0;j<m;j++) {
sum+= (source_array[i*m+j]* (Math.cos (tmp=cl*p*i+sl*qg*j)+Math.sin(tmp))) ;

target_array [p*m+gl =sum;

1
}

return;

Native VM code fragment (testbench.flp)

(defun dht (progn

(setq target_array (+ 0 $1))
setg n (+ 0 $2))
setg m (+ 0 $3))
setq source_array (+ 0 $4))
setq cl (/. (*. 2. (pi)) n))
setg s1 (/. (*. 2. (pi)) m))

setq m_1 (-- m))
setg n_1 (-- n))
for p 01 n_ 1
(for g 0 1 m_1 (progn
(setg s 0.)

(for 1 0 1 n_1
(for 3 01 m 1
(setg s (*+. (asyncheap_getfloat source_array (*+ m i j))
(cas (*+. cl (*. p i) (*. s1 (*. g 3)))) s))
)
)
(asyncheap_putfloat target_array (*+ m p q) s)
))
)
))

Benchmarked fragments of code

The testbench was benchmarked on various processors (Opteron, Itanium, POWER) demonstrating nearly the same
average performance degradation ratio on these processors:

Benchmarks

Pure ANSI C compiled machine code: 100sec. (1.0 - baseline)
Java VM running Java byte code: 300sec. (3.0 - times slower)
Native VM running BMDFM byte code: 550sec. (5.5 - times slower)

Test results

Thus, the performance degradation of pure unparalleled VM byte code is 5.5 times compared to ANSI C compiled machine
code. Asaconclusion, it isworth highlighting two general idess:

e BMDFM that runs application byte code (preferably structured in coarse-grain functions) on an 8-way SMP machine
can outperform unparalleled ANSI C compiled machine code.

e Useof VM becomes much more efficient when the VM is extended with C-implementations of frequently used coarse-
grain functions.

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 22 of 38 = http://bmdfm.com

23. How does therelaxed consistency model of shared memory influence BMDFM ?

Although the question of how consistent shared memory is seems simple, it is remarkably complicated, as is shown with a
simple example:

Process 0 shares A and B (pseudo-code)

a=1;

a=0;
if () {

} .
Process 1 shares A and B (pseudo-code)

b=1;

b=0;
if (a){

Concurrent processes running on different processors

Assume that the processes are running on different processors, and that locations of A and B are originally cached by both
processors with the initial value of 1. If writes always take immediate effect and are immediately seen by other processors, it
will be impossible for both if-statements to evaluate their conditions as true, since reaching the if-statement means that either A
or B must have been assigned the value 0. But suppose the write invalidate is delayed, and the processor is allowed to continue
during this delay — then it is possible that both processes have not seen the invalidation for B and A, respectively, before they
attempt to read the values. |n other words, processed data can be invisible for the other processor because data has not even | eft
the boundaries of the processor where it was processed.

The most straightforward model for memory consistency is called sequential consistency. Sequential consistency requires
that the result of any execution be the same as if the memory accesses executed by each processor were kept in order and the
accesses among different processors were arbitrarily interleaved. Sequential consistency eliminates the possibility of some non-
obvious execution in the previous example, because the assignments must be completed before the if-statements are initiated.
The sequential consistency model has a performance disadvantage.

To provide better performance, researchers and architects have designed relaxed consistency of shared memory, which
yields a variety of models including weak ordering, the Alpha consistency model, the PowerPC consistency model, and
release consistency depending on the details of the ordering restrictions and how synchronization operations enforce ordering.
The main idea from the programmer’s point of view is that data becomes consistent when a synchronization primitiveis called.

Memory Ordering X86 AMD64 IA64 PA-RISC SPARC SPARC SPARC POWER S/390 Alpha
RMO PSO TSO
Loads reordered after loads Y Y Y Y Y
Loads reordered after stores Y Y Y Y Y
Stores reordered after stores Y Y Y Y Y Y
Stores reordered after loads Y Y Y Y Y Y Y Y Y Y
Atomic instructions reordered with loads Y Y Y Y
Atomic instructions reordered with stores Y Y Y Y Y
Dependent loads reordered Y
Incoherent instructions cache/pipeline Y Y Y Y Y Y Y Y

Memory ordering in various processors

And now let’'s go back to BMDFM. Speculative parallel OQPROC scheduling processes, for the sake of performance, call
only a reduced number of necessary synchronization primitives. Normally, such a strategy is acceptable when running
BMDFM, for example, on the Intel architecture, which tends to be more sequentially consistent. A problem can appear when
running BMDFM, for example, on the IBM POWER architecture exploiting relaxed consistency — a dead stall can be
observed. Experimentally, such a stall can happen one time per month in average when running BMDFM in an intensive batch
mode on an 8-way POWER machine.

BMDFM has built-in facilities to compensate the influence of the relaxed consistency model of shared memory. These
compensation mechanisms are activated by the RELAXED_CNSTN_SM_MODEL configuration parameter of the BMDFM
configuration profile, and they are activated by default. It is strongly recommended to keep them activated if the consistency
model of SMP machineis not clear enough.

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 230f 38 = http://bmdfm.com

24. How does the BMDFM dataflow engine process an array?

The addressed issue is very interesting and very sensitive in all known implementations of dataflow machines. For example,
the famous Monsoon dataflow machine project (Motorola Cambridge Research Center) provides a classical solution of this
problem based on i-structures, that is fairly efficient, however, till not efficient enough. BMDFM uses the advanced approach
described below.

Arrays are not contexted data — this would be too expensive. By default, BMDFM accesses array's members in parallel,
detecting overwritten values. An overwritten value is detected as a violation of the single assignment paradigm. For most
typical cases like the following, this approach works well, causing no violation:

Pseudo-code

for(i=0;1i<=N;i++)
afil=...;

for(i=0;i<=N;i++)
blil=...ali]...;

Fragment without violation of single assignment

If a violation of single assignment is detected, then BMDFM recommends using the HARD_ ARRAY_SYNCHRO
configuration parameter of the BMDFM configuration profile. In the case of hard array synchronization, BMDFM tracks all
array accesses and does assignments sequentially. Thus, no contentions appear, and, besides, such a sequential fine-grain access
works faster anyway than the fine-grain access round trips through the dataflow machinery.

Let’s describe the use cases of array processingin BMDFM.

USECASE 0: There are multiple fine-grain assignments of the array’'s members running in parallel without using
HARD_ARRAY_SYNCHRO seridlization. Having the input code fragment described below, the generated input to the
BMDFM dataflow engine works correctly in parallel because arrays are local for funcO and funcl and, thus, in the different
contexts:

afil=...;
for(i=0;i<=N;i++)
ali]
Generated input to the BMDFM dataflow engine (pseudo-code)
funco (array)
for(i=0;i<=N;i++)
arrayl[il=...;
return array;

funcl (array) {
for(i=0;i<=N;i++)
array[il=...;
return array;

a=funco(a) ;
a=funcl (a) ;

Fragments for USECASE 0

USECASE 1: Assigned values are heavyweight computations. Then serialization of HARD _ARRAY_SYNCHRO ensures
correctness and at the same time does not bring any performance degradations:

Initial sequence (pseudo-code)
for(i=0;1<=N;i++)

ali]l=func();

Generated input to the BMDFM dataflow engine (pseudo-code)
for (1i=0;1i<=N;i++)
temp=func(); // contexted, heavy-weight computations are parallel.
al[i]=temp; // sequential, no performance degradations.

Fragments for USECASE 1

USECASE 2: Array processing is done in a coarse-grain fashion. In this case, the above mentioned funcO and funcl are
seamless for the dataflow scheduler, thus, the dynamic scheduler is not aware of the arrays at al:

Pseudo-code
funco (array) // defined as a seamless function funcl (array) // defined as a seamless function
for (i=0;i<=N;i++) for(i=0;i<=N;i++)
array[il=...; array([il=...;
return array; return array;

}

}
Fragments for USECASE 2

USECASE 3: Finadly, the arrays can be processed as normal arrays programmed in C via pointers. In this case, the parallel
array processing is reduced to the known case of " Synchronization of Asynchronous Coarse-Grain and Fine-Grain Functions'.

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 24 of 38 = http://bmdfm.com

25. How do you enable late binding for a precompiled program?

Suppose, we have a problem.flp calling (mapcar) with UDF's that are defined in .cfg, e.g.:

$ cat problem.flp

?f%sélisp "(flogl -2 -8)") # (fastlisp) and (flogl) are defined in .cfg
$ fastlisp -c problem.flp

3.6060000000000000E+00

$ fastlisp -q problem.flx
[Syntax error 3]: In function ~ (Main)': undefined function name “FLOGl': (flogl -2 -8)

Lsll

Terminal

When running a precompiled program, .cfg is not loaded in sake of performance.
Note that ' BMDFMIdr -c problem.flp; BMDFMIdr -q problem.flz- works correctly since .cfg is loaded by the BMDFM
Server.

Here is a simple solution on how we can run our precompiled problem.flx in a way that (mapcar) still works for .cfg-
defined UDF's. Conventional wisdom tells usto write atrivial just-one-line-of-code fIxrunner .flp helper:

$ cat flxrunner.flp
(fastlisp (rightl (get_file $1) (<< (len (dump_i2s 0)) 1))) # (fastlisp) and (get_file) are in .cfg

$ fastlisp -q flxrunner.flp problem.flx
3.0000000000000000E+00

Terminal

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 250of 38 = http://bmdfm.com

26. How do you fix unresolved dependenciesintroduced by vendor's proprietary compiler?

In order to achieve better optimization level on different target platforms BMDFM is built using vendor’'s proprietary
compilers for the target platforms where possible. Users might want to write their own C-interface extensions and rebuild
BMDFM using e.g. publicly available gcc compiler. This works pretty well in general, however, sometimes leading to harmless

side-effects and minor inconvenience i ssues:

Terminal
$ source /opt/intel/composer xe 2015.0.090/bin/compilervars.sh intel64
$ icc -mmic -o BMDFMsrv BMDFMsrv.o cflp udf.o -lm -lpthread

$ /usr/linux-klom-4.7/bin/x86 64-klom-linux-gcc -o BMDFMsrv BMDFMsrv.o cflp udf.o -lm -lpthread

BMDFMsrv.o: In function “copy flp data ':

(.text+0xe946): undefined reference to ~_intel fast memset'
BMDFMsrv.o: In function “copy flp data ':

(.text+0xe98b): undefined reference to ~_intel fast_ memcpy'
BMDFMsrv.o: In function ~_reallocpool':

(.text+0x27136) : undefined reference to ~_intel fast memmove'
BMDFMsrv.o: In function “rat':

(.text+0x29491) : undefined reference to ~_intel fast memcmp'

Y |

Cross-compiling for native Intel Xeon Phi MIC on Linux

Terminal
$ cc -g64 -o CPUPROC CPUPROC.o cflp udf.o -lm -lpthread
$ gecc -maix64 -o CPUPROC CPUPROC.o cflp udf.o -1lm -lpthread
1d: 0711-317 ERROR: Undefined symbol: ._ x1 log
1d: 0711-317 ERROR: Undefined symbol: ._ x1_exp
1d: 0711-317 ERROR: Undefined symbol: ._ x1 cos
1d: 0711-317 ERROR: Undefined symbol: ._ x1 sin
1d: 0711-317 ERROR: Undefined symbol: ._ x1 atan
1d: 0711-317 ERROR: Undefined symbol: ._ x1_tanh
S |

Compiling for RS/6000 on POWER AIX

The solution isto use another linker or link explicitly against an appropriate vendor’s library, e.g.:

Terminal
$ /usr/linux-klom-4.7/bin/x86 64-klom-linux-gcc -o BMDFMsrv BMDFMsrv.o cflp udf.o -lm -lpthread

BMDFMsrv.o: In function “copy flp data ':

(.text+0xe946): undefined reference to ~_intel fast memset'
BMDFMsrv.o: In function “copy flp data ':

(.text+0xe98b): undefined reference to ~_intel fast_ memcpy'
BMDFMsrv.o: In function ~_reallocpool':

(.text+0x27136) : undefined reference to ~_intel fast memmove'
BMDFMsrv.o: In function “rat':
(.text+0x29491) : undefined reference to

_intel fast_memcmp'

$ /usr/linux-klom-4.7/bin/x86 64-klom-linux-gcc -o BMDFMsrv BMDFMsrv.o cflp udf.o -lm -lpthread

-L/opt/intel/composer xe 2015.0.090/compiler/lib/mic/ -lirc

Cross-compiling for native Intel Xeon Phi MIC on Linux

If the required vendor’s library is not available then (in case of urgency) an own trivial stub implementation can be added to

the C-interface extension, e.g.:

C code
void *_intel_ fast _memset(void *s, int ¢, size_t n){
return memset (s, c,n) ;

void *_intel_ fast memcpy (void *dest, const void *src, size_t n){
return memcpy (dest,src,n);

void *_intel_ fast memmove (void *dest, const void *src, size_t n){
return memmove (dest,src,n) ;

int _intel_ fast memcmp (const void *sl, const void *s2, size_t n){
return memcmp (sl,s2,n);

double _ x1_log(double x) {
return log(x) ;

double _ x1_exp (double x) {
return exp (x) ;

double _ x1_cos (double x) {
return cos (x) ;

double _ x1_sin(double x){
return sin(x) ;

double _ x1_atan (double x) {
return atan(x) ;

double _ x1_tanh (double x) {
return tanh (x);

Own trivia stub implementation of the missing functions

BMDFM FAQ (“ A Little Boy and His BMDFM") = Page 26 of 38 =

http://bmdfm.com

27. How do you build fastlisp.exe with M SV S linking against cygwinl1.dll?

Download and install latest version of Cygwin. Y ou will need latest cygwinl.dll and crt0.c. Y ou will also need to build your
ownmy_crtO.cintoaDLL inaCygwin prompt.

Download impdef.exe for Windows. Use the impdef.exe program to generate a cygwinl.def file for the cygwinl.dll in a
Windows prompt:

Windows prompt

> impdef cygwinl.dll >cygwinl.def
>

Generation of definition file

Usethe MS VSlinker (lib.exe) to generate an import library in a Windows prompt:

Windows prompt

> "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat"
> 1lib /def:cygwinl.def /out:cygwinl.lib

Generation of import library file

Create afile my_crt0.c with the following contents:

#include <sys/cygwin.h>
#include <stdlib.h>

typedef int (*MainFunc) (int argc, char *argv([], char **env);

void my_ crt0 (MainFunc f) {
cygwin crt0(f); /* cygwinl.dll needs to be initialized */

Auxiliary Cfile
Use gcc in a Cygwin prompt to build my_crtO.cinto aDLL (e.g. my_crtO.dll):

Cygwin prompt
$ gec my crt0.c -shared -o my crt0.dll
$

Generation of DLL

Generate my_crt0.def and my_crt0.lib files for the my_crt0.dll in a Windows prompt:

Windows prompt

> impdef my crt0.dll >my crtO.def
> 1lib /def:my crt0.def /out:my crt0.lib

Generation of definition file and import library file

Copy crt0.c from your Cygwin installation and include it into your sources for MS VS. Modify it to call my_crtO() instead
of cygwin_crtO(). Build your object files using the MS VS compiler cl.exe, e.g.:

Windows prompt

> cl cflp udf.c crt0.c /o "fastlisp.exe" /D " NOT UNIX " /link /NODEFAULTLIB fastlisp.o my crt0.lib
cygwinl.lib
>

Generation of executablefile

Note that if you are using any other Cygwin based libraries then you will probably need to build them as DLL's using gcc
and then generate import libraries for the MS VSlinker.

BMDFM FAQ (“ A Little Boy and His BMDFM”) = pme 27 of 38 = http://bmdfm.com

28. How do you start BMDFM on Windows with Cygwin?

Please, read the following user story:

BMDFM and Cy: |

- I have an old version of Cygwin and I cannot start BMDFM. Probably my Cygwin version does not support POSIX for 100%.
- No problem. We can try to start BMDFM with your current Cygwin version. Which error message did you get?
- Single-threaded version works fine, but when I start BMDFMsrv I get the following error:

[Msg] : Determining the system semaphore parameters...

Cannot determine sems_per_group for SVR4 sema4.

ProcName=BMDFMsrv, PID=4104, tID=4104, Module=mem pool, Function=sem4svr4_determ(), Location=2.

semget (key_t key = 0(IPC_PRIVATE), int nsems = 1, int shmflg = 1968 (512 (IPC_CREAT) |1024 (IPC_EXCL) |432 (permissions)))

- What did you get when your try ipcs?

- $ ipcs
ipcs: msgetl: Function not implemented

- Ok. You need to start Cygwin server:
$ /usr/sbin/cygserver.exe &
[1] 3280
cygserver: Initialization complete. Waiting for requests.
- BMDFM still does not start and hangs while starting PROCstat:
[SysMsg] : Forking up and handshaking the PROCstat daemon.. .
PROCstat daemon does not respond.
ProcName=BMDFMsrv, PID=2292, tID=2292, Module=BMDFMsrv, Function=main(), Location=125.
- Try to attach strace to the PROCstat process. What do you see?
- $ strace -p 2412
136 432630 [main] PROCstat 2412 _ set_errno: static int semaphore::wait (semaphore**):3925 setting errno 22

59 432689 [main] PROCstat 2412 _ set_errno: static int semaphore::wait (semaphore**):3925 setting errno 22
50 432739 [main] PROCstat 2412 _ set_errno: static int semaphore::wait (semaphore**):3925 setting errno 22

- Ok. Your Cygwin does not fully support POSIX semaphores. Seems they do not work for multi processes.
Let us switch BMDFM to SVR4 semaphores.
Please, comment the following line in your BMDFMsrv.cfg file:

#POSIX SEMA4 SYNC = RW+Count # Replace None/RW/RW+Count SVR4 with POSIX sema4
- BMDFM still does not start:
[SysMsg] : Setting up the Task Connection Zone (TCZ)...
Cannot create semaphore.
ProcName=BMDFMsrv, PID=4720, tID=4720, Module=BMDFMsrv, Function=main(), Location=50, SysCall=semget (), errno=28

No space left on device

*** EMERGENCY EXIT from the BM_DFM Server session. ***
BM_DFM KERNEL PANIC, RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.

Ok. There is insufficient number of semaphores in the default configuration of the Cygwin server.
Change the following settings in your /etc/cygserver.conf file and restart the Cygwin server:

kern.ipc.semmni: Maximum no. of semaphore identifiers hold concurrently.
Default: 10, Min: 1, Max: 1024
kern.ipc.semmni 1024

kern.ipc.semmns: Maximum no. of semaphores hold concurrently.
Default: 60, Min: 1, Max: 1024
kern.ipc.semmns 1024

kern.ipc.semmsl: Maximum no. of s hores per s hore id.
Default: 60, Min: 1, Max: 1024
kern.ipc.semmsl 1024

BMDFMsrv starts now. But BMDFMldr fails to start:

$ BMDFMldr hello.flp

Current termcap settings:
TERM_TYPE=\Xterm'; LINES_TERM=\35'; COLUMNS_TERM=\124';
CLRSCR_TERM="\e [H\e[2J'; REVERSE_TERM="\e[7m'; BLINK TERM="\e[5m';
EOLD_TERM=\\e[1m'; NORMAL_TERM=\\e[Om'; HIDECURSOR_TERM=\\e[?251';
SHOWCURSOR_TERM="\e[?121\e[?25h'; GOTOCURSOR_TERM="\e[%i%d;%dH'.

Reading the ~/tmp/.BMDFMsrv' BM_DFM connection file...

Opening the ~/tmp/.BMDFMsrv_npipe' BM_DFM named FIFO pipe...

Cannot open the named fifo pipe for R/W ~/tmp/.BMDFMsrv_npipe'.

ProcName=BMDFMldr, PID=5048, tID=5048, Module=BMDFMldr, Function=main(), Location=11, SysCall=open(), errno=16
Device or resource busy

$ 1s -la /tmp/.BMDFMsrv_npipe
prw-rw-rw- 1 user None 0 Apr 13 23:42 /tmp/.BMDFMsrv_npipe

What do you see when you start BMDFMldr with strace?
- $ strace BMDFMldr hello.flp

27 205505 [main] BMDFMldr 1120 open: -1 = open(/tmp/.EMDFMsrv_npipe, 0x8002), errno 16

$ echo -n >npip

$ export BM DFM CONNECTION NPIP path=npip
$ tail -f npip >/tmp/.BMDFMsrv_npipe &

$ BMDFMldr hello.flp

Thank you! Everything works fine now.

Ok. Your Cygwin does not fully support named pipes. Let us do the following trick in the shell where you run your BMDFMldr:

BMDFM and Cygwin

BMDFM FAQ (“ A Little Boy and His BMDFM") = Page 28 of 38 =

http://bmdfm.com

29. Why cannot sem_maxval be deter mined for POSI X sema4?

The BMDFM Server may fail to start with an error message regarding POSIX semad, e.g. when starting on Windows

SFU/SUA:

C:\HOME\BMDFM Win32-SFU-SUA - cmd.exe

[SysMsgl : Squeezing nested PROGN statements in the Global FastLisp function set...
| [sysMsg] : Redundant nested PROGN statements removed: 0.
| [SysMsgl: Resolving data types in the Global FastLisp function set...
| [SysMsgl: Compiling the Global FastLisp function source code (Pass One)...
| [DFMKrnl]: Compiled Global function bytecode size is 7964Bytes.
| [SysMsgl: Linking compiled Global function bytecode (Pass Two) ...
| [Msg] : Determining the system semaphore parameters...

* Stay alert! Information you are about to view is being logged as “BOOT DUMP'.

Cannot determine sem maxval for POSIX sema4.
ProcName=BMDFMsrv, PID=1793, tID=1793, Module=mem pool, Function=sem4posix determ(), Location=4.

C:\HOME\BMDFM_Win32-SFU-SUA> I

Starting the BMDFM Server in a Windows prompt

The reason might be that the POSIX semad functionality is not fully supported by the OS. This can be easily tested as

shown below:

C:\HOME\BMDFM Win32-SFU-SUA - cmd.exe

C:\HOME\BMDFM_Win32-SFU-SUA> C:\Windows\SUA\bin\ed
a
/* posixsem4_test.c */

#include <stdlib.h>
#include <stdio.h>
#include <semaphore.h>

int main(void) {

sem_t sem; /* posix sema4d */
int pshared=1; /* share sema4 among processes */
unsigned int value=0; /* initial sema4 value */

printf ("sem_init (shared) has returned %d\n",sem init (&sem,pshared,value));
perror (NULL) ;
return 0;

}

w posixsem4_test.c
364
q

C:\HOME\BMDFM_Win32-SFU-SUA> C:\Windows\SUA\opt\gcc.4.2\bin\gcc -L /dev/fs/C/Windows/SUA/usr/l1ib/x86 -
o posixsem4 test posixsemd test.c

C:\HOME\BMDFM_Win32-SFU-SUA> posixsem4 test
sem_init(shared) has returned -1
Not supported

C: \HOME\BMDFM Win32-SFU-SUA> I

Testing whether POSIX sema4 can be shared among processes

In case where the POSIX sema4 cannot be shared among processes, BMDFM has to be configured for using SVR4 semad

functionality:

BMDFMsrv.cfg

.. .
POSIX SEMA4 SYNC = None # Replace None/RW/RW+Count SVR4 with POSIX sema4
#

SVR4 semad settings

BMDFM FAQ (“ A Little Boy and His BMDFM") = Page 29 of 38 =

http://bmdfm.com

30. How do you run BMDFM on Linux with glibc that is older than required by BMDFM?

Thisisthe error you might get when you run BMDFM against an old glibc, e.g.:

$ BMDFMsrv
BMDFMsrv: /lib64/ld-linux.so.2: version “GLIBC_2.12' not found
BMDFMsrv: /lib64/libc.so.6: version “GLIBC_2.12' not found
BMDFMsrv: /lib64/libpthread.so.0: version “GLIBC_2.12' not found

Unresolved externals due to older library version

In order to stay non-intrusive to the system, it is possible to have multiple versions of glibc on the same system. Download
and install required version of glibc into your private (e.g. /hnome/myglibc64) directory to be used and linked against BMDFM.

Dynamically linked EL F-executables always specify a dynamic linker or interpreter, which is a program that actually loads
the executable along with all its dynamically linked libraries. The absolute path to the interpreter (e.g. /lib64/ld-linux.so.2 on
64-bit Linux) is hard-coded into the executable at link time. This absolute path can also be changed after the link is done, e.g.
by a binary editor modifying the interpreter section of executable. However, thisis not quite trivial because the path of the new
interpreter may be longer than the old one. Download and install patchelf utility that takes care of increasing the executable
size with sufficient space at the beginning to contain the new interpreter field. Note that the resulting executables may be one

page (usually 4KB) larger.

Adjust BMDFM to use glibc from your private /home/myglibc64 directory:

Terminal

-print-interpreter $i;

/home/myglibc64/1d-1inux.so.
/home /myglibcé4/1d-1inux.so.
/home/myglibc64/1d-1linux.so.
/home /myglibcé4/1d-1inux.so.
/home/myglibc64/1d-1linux.so
/home /myglibcé4/1d-1inux.so.
/home/myglibc64/1d-1inux.so.
/home /myglibcé4/1d-1inux.so.
/home/myglibc64/1d-1inux.so.

-print-interpreter $i; done
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so.2
/1ib64/1d-1linux.so0.2

$ gecc -m64 -W1,--rpath=/home/myglibc64
fastlisp.o cflp udf.o -lm -lpthread

$ gecc -m64 -Wl,--rpath=/home/myglibc64
BMDFMldr.o cflp udf.o -lm -lpthread

$ gecc -m64 -W1,--rpath=/home/myglibc64
BMDFMsrv.o cflp udf.o -lm -lpthread

$ gecc -m64 -W1,--rpath=/home/myglibc64
CPUPROC.o cflp udf.o -1m -lpthread

$ patchelf --set-rpath /home/myglibcé64
$ patchelf --set-rpath /home/myglibcé64
$ patchelf --set-rpath /home/myglibcé64
$ patchelf --set-rpath /home/myglibcé64
$ patchelf --set-rpath /home/myglibcé64

done

[SENENECENENE SN

-W1, --dynamic-linker=/home/myglibc64/1d-1linux.
-W1, --dynamic-linker=/home/myglibc64/1d-1linux.
-W1, --dynamic-linker=/home/myglibc64/1d-1linux.

-W1, --dynamic-linker=/home/myglibc64/1d-1linux.

--set-interpreter /home/myglibc64/1d-linux.
--set-interpreter /home/myglibc64/1d-linux.
--set-interpreter /home/myglibc64/1d-linux.
--set-interpreter /home/myglibc64/1d-linux.
--set-interpreter /home/myglibc64/1d-linux.

so.
so.
so.
so.
so.

so.

so.

so.

NN DN

$ for i in fastlisp BMDFMsrv PROCstat IORBPROC OQPROC CPUPROC BMDFMldr BMDFMtrc freeIPC; do patchelf -

fastlisp
BMDFM1dr
BMDFMsrv
CPUPROC
PROCstat
IORBPROC
OQPROC

BMDFMtrc
freeIPC

$ for i in fastlisp BMDFMsrv PROCstat IORBPROC OQPROC CPUPROC BMDFMldr BMDFMtrc freeIPC; do patchelf -

Switching BMDFM to pull libraries from another location

BMDFM FAQ (“ A Little Boy and His BMDFM”)

=Page 30 of 38 =

http://bmdfm.com

31. Why doesit seem like BMDFM keyboard input isdelayed on Linux Alpha-based machines?

Linux for Alpha-processor-based machines preserves some compatibility with OSF/1. Keyboard input is buffered to hold
keystrokes in a buffer before they are processed. The buffer size can be seen by attaching strace to BMDFMsrv when the
BMDFM server waits for the keyboard input from the BMDFM server console:

Terminal on Alpha server

$ strace -v -s 1000 -p <PID of BMDFMsSrv>

ioctl (3, TCGETA, {c_iflags=0x4300, c_oflags=0x3, c_cflags=0xb0f, c_lflags=0x5cf,
c_line=0, c_cc="\x03\x1c\x7£\x15\x04\x00\x00\x00"}) = 0

ioctl (3, TCSETAW, {c_iflags=0x4300, c_oflags=0xc03, c_cflags=0xb0f, c_lflags=0x4
cl, c_line=0, c_cc[_VMIN]=4, c_cc[VTIME]=0, c_cc="\x03\x1c\x7£\x15\x04\x00\x00\

x00"}) = 0
select (8, [3 5 7], NULL, NULL, NULL) =1 (in [3]
read (3, "a", 1) =1

ioctl (3, TCSETAW, {c_iflags=0x4300, c_oflags=0x3, c_cflags=0xb0f, c_lflags=0x5cf
, c_line=0, c_cc="\x03\x1c\x7£\x15\x04\x00\x00\x00"}) = 0

ioctl (3, TCGETA, {c_iflags=0x4300, c_oflags=0x3, c_cflags=0xb0f, c_lflags=0x5cf,
c_line=0, c_cec="\x03\x1c\x7£\x15\x04\x00\x00\x00"}) = 0

ioctl(3, TCSETAW, {c_iflags=0x4300, c_oflags=0xc03, c_cflags=0xb0f, c_lflags=0x4
cl, c_line=0, c_cc[_VMIN]=4, c_cc[VTIME]=0, c_cc="\x03\x1c\x7f\x15\x04\x00\x00\

x00"}) = 0

select (8, [3 5 7], NULL, NULL, NULL

Terminal

Similar information can be obtained by stty running in terminal where the BMDFM server is executed:

Terminal on Alpha server

$ stty -a -F /dev/tty
speed 38400 baud; rows 24; columns 80; line = 0;

intr = *C; quit = *\; erase = *?; kill = *U; eof = "D; eol = <undefs>;
eol2 = <undefs>; swtch = <undefs>; start = "Q; stop = *S; susp = *Z; rprnt = “R;
werase = “W; lnext = "V; discard = “U; min = 4; time = 0;

-parenb -parodd -cmspar cs8 -hupcl -cstopb cread -clocal -crtscts

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel iutf8

opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tabO bsO vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke -flusho

Lsll

Terminal

Changing the keyboard buffer size to 1 fixes the problem (note that the keyboard buffer size hasto be set to 1 separately for
each terminal where BMDFM is used):

Terminal on Alpha server

$ stty -icanon min 1 -F /dev/tty

$ stty -a -F /dev/tty
speed 38400 baud; rows 24; columns 80; line = 0;

intr = *C; quit = *\; erase = *?; kill = *U; eof = "D; eol = <undefs>;
eol2 = <undef>; swtch = <undef>; start = “Q; stop = *S; susp = *Z; rprnt = “R;
werase = “W; lnext = "V; discard = "U; min = 1; time = 0;

-parenb -parodd -cmspar cs8 -hupcl -cstopb cread -clocal -crtscts

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel iutf8

opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tabO bsO vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke -flusho

Lsll

Terminal

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 31lof 38 = http://bmdfm.com

32. How do you add “NUM A-awareness’ to BMDFM ?

Non-Uniform Memory Access (NUMA) design divides memory into multiple memory nodes, which are local to one or
more CPUs. The local memory node can be accessed faster than the other memory nodes. From this perspective, a NUMA
system can be viewed as a set of SMP systems. each NUMA node acts as an SMP system. NUMA nodes are connected via
some sort of system interconnect. A crossbar or point-to-point link are the most common types of such interconnects. Modern
servers with multiple CPU sockets usually have NUMA architecture. NUMA configuration can be displayed by numactl:

Terminal (Sun X4600M2 8x[Opteron/4cores]; Linux) Terminal (IBM S822LC 2x[POWER8/1l0cores/SMT8]; Linux)
$ numactl --hardware $ numactl --hardware
available: 8 nodes (0-7) available: 2 nodes (0,1)
node 0 cpus: 0 1 2 3 node 0 cpus: 0 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20
node 0 size: 32254 MB 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
node 0 free: 32184 MB 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
node 1 cpus: 4 5 6 7 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
node 1 size: 32244 MB node 0 size: 262144 MB
node 1 free: 32174 MB node 0 free: 253490 MB
node 2 cpus: 8 9 10 11 node 1 cpus: 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
node 2 size: 32255 MB 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
node 2 free: 32171 MB 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
node 3 cpus: 12 13 14 15 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
node 3 size: 32255 MB 149 150 151 152 153 154 155 156 157 158 159
node 3 free: 32144 MB node 1 size: 262144 MB
node 4 cpus: 16 17 18 19 node 1 free: 259213 MB
node 4 size: 32255 MB node distances:
node 4 free: 32117 MB node 0 1
node 5 cpus: 20 21 22 23 0: 10 40
node 5 size: 32255 MB 1: 40 10
node 5 free: 32130 MB $ I
node 6 cpus: 24 25 26 27
node 6 size: 32255 MB
node 6 free: 32129 MB
node 7 cpus: 28 29 30 31
node 7 size: 32255 MB
node 7 free: 32184 MB
node distances:
node 0 1 2 3 4 5 6 7
0: 10 12 12 14 14 14 14 16
1l: 12 10 14 12 14 14 12 14
2 12 14 10 14 12 12 14 14
3 14 12 14 10 12 12 14 14
4 14 14 12 12 10 14 12 14
5 14 14 12 12 14 10 14 12
6: 14 12 14 14 12 14 10 12
7: 16 14 14 14 14 12 12 10
L1

Terminals

Node distance matrices of these machines show that the neighbor memory node can be accessed up to 1.2 - 1.6 times slower
than the local memory node for Sun X4600M 2 and up to 4 times slower than the local memory node for IBM S822LC.

The standard libnuma library provides NUMA interface that alows one to build required NUMA policy depending on
application business logic. The simplest NUMA policy for BMDFM that makes sense would be to manage process affinity in
such a way that each CPUPROC process or thread runs on a dedicated NUMA node performing memory allocation locally on
this node for the fastest local memory access on this node:

C code for “NUMA-awareness” added to cflp udf.c

/* cflp_udf.c */
/]
#include <numa.h> /* include NUMA interface (link CPUPROC against libnuma library: -lnuma) */
/]
int NUMA Nodes=1; /* number of configured NUMA nodes */
/)
void startup_callback(void) {
/]
if(am I_in the CPUPROC module()) {
if (numa_available()==-1) /* check whether NUMA functionality is available */
fprintf (stderr, "startup callback(): WARN: NUMA functionality is not available!\n");
elsef
NUMA_Nodes=numa_num_configured nodes(); /* number of configured NUMA nodes */
if (NUMA Nodes<1) {
fprintf (stderr, "startup callback(): WARN: no configured NUMA nodes!\n");
NUMA Nodes=1;
fprintf (stderr, "startup callback(): INFO: number of configured NUMA nodes: %d.\n", NUMA Nodes) ;
if (numa_run on node(get_id_cpuproc () $NUMA Nodes)==-1) /* run process or thread on NUMA node */
fprintf (stderr, "startup callback(): WARN: numa_run_on node () failed! %d\n", errno);
elsef
numa_set_localalloc(); /* allocate memory on local node */
fprintf (stderr, "startup callback(): INFO: CPUPROC proc/thread %1d runs on NUMA node %1d.\n",
get_id cpuproc(), get_id cpuproc () sNUMA Nodes) ;
}
}
/)
}
/)
return;
}

The simplest NUMA policy for BMDFM: run each CPUPROC process or thread
on a dedicated NUMA node with local memory allocation

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 32 0of 38 = http://bmdfm.com

33. How do you resolve lcc linkage issues on e2k Linux?

Support for generic e2k architecture might be deprecated in some lcc compiler versions. This leads to linkage issues for
older generic e2k object files as shown in the examples bel ow:

Terminal (MCST Elbrus VL
MCSTelbrus_Linux 32$ lcc -v
lcc:1.24.11:May-26-2020:e2k-v4-1linux
Thread model: posix

gcc version 7.3.0 compatible.

; Linux)

MCSTelbrus_Linux_ 32$ make

lcc -mptr32 -pthread -04 -Ofast -fPIC -c cflp udf.c

lcc -mptr32 -pthread -o fastlisp fastlisp.o cflp udf.o -1m -lpthread
/usr/bin/1d: fastlisp.o: link of ~“generic' input files is no longer supported
/usr/bin/1ld: failed to merge target specific data of file fastlisp.o

make: *** [Makefile:19: fastlisp] Error 1

MCSTelbrus_Linux 32$ cd ../MCSTelbrus Linux 64

MCSTelbrus_Linux 64$ make

lcc -mptr64 -pthread -04 -Ofast -fPIC -c cflp_udf.c

lcc -mptr64 -pthread -o fastlisp fastlisp.o cflp udf.o -1m -lpthread
/usr/bin/1d: fastlisp.o: link of “generic' input files is no longer supported
/usr/bin/1d: failed to merge target specific data of file fastlisp.o

make: *** [Makefile:19: fastlisp] Error 1

MCSTelbrus Linux 64$]

Examples of linkage issues on e2k Linux

A workaround solution would be to replace Flags value "0x0, generic" with "0x2000000, elbrus-v2" in ELF-headers of all
BMDFM object files (or to use BMDFM binaries including object files that are built with a newer version of lcc compiler if
those are available in your BMDFM distribution package):

Terminal (MCST Elbrus VLIW; Linux 32-
MCSTelbrus_Linux_32$ readelf -h fastlisp.o

Terminal (MCST Elbrus VLIW;
MCSTelbrus_Linux_64$ readelf -h fastlisp.o

Linux 64-b

}

Start of program headers:

Start of section headers:

Flags:

Size of this header:

Size of program headers:

Number of program headers:

Size of section headers:

Number of section headers:

Section header string table index:

MCSTelbrus_Linux_32$ cat elf32.c

int main(int argc, char* argvI])

int f_descr;
if (argc!=2) {

0 (bytes into file)
772960 (bytes into file)
0x0, generic, default ipd
52 (bytes)

0 (bytes)

0

40 (bytes)
14

11

fprintf (stderr, "Usage: %s <ELF_binary file>\n",argv[0]);

exit(-1);

f_descr=open(argv[1],0 RDWR) ;

if (f_descr==-1) {
fprintf (stderr, "Cannot open file
exit(-1);

E1£f32_ Ehdr header;

$s\n",argv[1l]);

read (f_descr, (void*) &header, sizeof (E1£32_Ehdr)) ;

header.e_flags=0x2000000;
lseek (f_descr, 0, SEEK_SET) ;

write (f_descr, (void*) &header, sizeof (E1£32_ Ehdr)) ;

close (f_descr) ;
return 0;

Flags:

0x2000000,

MCSTelbrus_Linux_32$ lcc -mptr32 -o elf32 elf32.c
MCSTelbrus_Linux 32$ ls *.o0 | xargs ./elf32

MCSTelbrus_Linux 32$ readelf -h fastlisp.o | grep Flags

elbrus-v2, default ipd

ELF Header: ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 0O Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 0O

Class: ELF32 Class: ELF64

Data: 2's complement, little endian Data: 2's complement, little endian

Version: 1 (current) Version: 1 (current)

OS/ABI: UNIX - System V OS/ABI: UNIX - System V

ABI Version: 0 ABI Version: 0

Type: REL (Relocatable file) Type: REL (Relocatable file)

Machine: MCST Elbrus general purpose Machine: MCST Elbrus general purpose
hardware architecture hardware architecture

Version: 0x1 Version: 0x1

Entry point address: 0x0 Entry point address: 0x0

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

MCSTelbrus_Linux_64$ cat elf64.c

#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <fcntl.h> #include <fcntl.h>
#include <unistd.h> #include <unistd.h>
#include <elf.h> #include <elf.h>

int main(int argc, char* argvI])

}

MCSTelbrus_Linux_64$ lcc -mptr64 -o elf64 elf64.c
MCSTelbrus_Linux 64$ ls *.o0 | xargs ./elfé64

MCSTelbrus_Linux 64$ readelf -h fastlisp.o | grep Flags

int f_descr;
if (argc!=2)

fprintf (stderr, "Usage: %s <ELF _binary file>\n",argv[0]);

exit (-1);

f_descr=open(argv[1],0 RDWR) ;
if (f_descr==-1)

fprintf (stderr, "Cannot open file %s\n",argvI[1l]);

exit(-1);

E1f64_ Ehdr header;

read (f_descr, (void*) &header, sizeof (E1£64_Ehdr)) ;

header.e_flags=0x2000000;
lseek (f_descr, 0, SEEK_SET) ;

write (f_descr, (void*) &header, sizeof (E1£64_Ehdr)) ;

close (f_descr) ;
return 0;

Flags:

0x2000000,

0 (bytes into file)
864312 (bytes into file)
0x0, generic, default ipd
64 (bytes)

0 (bytes)

0

64 (bytes)
14

11

elbrus-v2, default ipd

MCSTelbrus_Linux_32$ make clean; make
rm -f cflp udf.o fastlisp BMDFMldr BMDFMsrv CPUPROC 2>/dev/null

lcc -mptr32 -pthread -04 -Ofast -fPIC -c cflp udf.c

lcc -mptr32 -pthread -o fastlisp fastlisp.o cflp_udf.o -1lm -lpthread
lcc -mptr32 -pthread -o BMDFMldr BMDFMldr.o cflp_udf.o -1lm -lpthread
lcc -mptr32 -pthread -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread
lcc -mptr32 -pthread -o CPUPROC CPUPROC.o cflp _udf.o -1lm -lpthread
MCSTelbrus_Linux_32$ I

MCSTelbrus_Linux_ 64$ make clean; make
rm -f cflp udf.o fastlisp BMDFMldr BMDFMsrv CPUPROC 2>/dev/null

lcc -mptr64 -pthread -04 -Ofast -fPIC -c cflp udf.c

lcc -mptré64 -pthread -o fastlisp fastlisp.o cflp_udf.o -1lm -lpthread
lcc -mptr64 -pthread -o BMDFMldr BMDFMldr.o cflp_udf.o -1lm -lpthread
lcc -mptré64 -pthread -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread
lcc -mptré64 -pthread -o CPUPROC CPUPROC.o cflp _udf.o -1lm -lpthread

MCSTelbrus_Linux_64$ I

Workaround solution to modify ELF-headers of BMDFM object files

BMDFM FAQ (“ A Little Boy and His BMDFM”)

=Page 33 0f 38 =

http://bmdfm.com

34. How do you overwrite internal functions of BMDFM with your own functions?

Suppose you would like to replace one of the existing internal functionsin BMDFM, then you can write your own functions
with the same names and force linker to use your replacement by calling the linker with the -WI,--allow-multiple-definition

option.

Let us take an example where existing upper() and lower() functions are replaced with our own private implementation,
which considers UTF8 character encoding. We convert strings to wide character strings, change the converted wide strings to
upper or lower case and then convert them back to UTF8 strings:

Example of private replacement for upper() and lower() functions (C code) \

#include "cflp_udf.h"
#include <locale.h>
#include <wchar.h>
#include <wctype.h> /#* for towupper () and towlower () */
#define WCR wchar_t

/* Helper to allocate memory for wide string */
WCR *wmk_fst buff (WCR **buff, ULO size) {
mk_fst_buff ((CHR**)buff, (size+1) *sizeof (WCR)) ;
* (*buff+size)=(WCR)O;
return *buff;

/* Helper to free memory for allocated string */
WCR *wfree_string (WCR **targ) {

return (WCR*)free_string((CHR**)targ) ;
}

/* Helper to calculate length of wide string */
ULO wlen(const WCR *string) {
return len((CHR*)string)<sizeof (WCR)?0:len((CHR*)string)/
sizeof (WCR)-1;
}
/* Helper to copy wide string */
WCR *wequ (WCR **targ, const WCR *source) {
ULO 1;
if (*targ!=source) {
l=wlen(source) ;
wmk_fst_buff (targ,1);
memcpy ((void*) *targ, (void*) source,l*sizeof (WCR)) ;

return *targ;
}
/* Helper to concatenate wide strings */
WCR *wcat (WCR **targ, const WCR *source) {
ULO l0=wlen(*targ),ll=wlen(source) ;
WCR *temp=NULL;
wmk_fst_buff (&temp,10+11) ;
memcpy ((void*) temp, (void*) *targ,l0*sizeof (WCR)) ;
memcpy ((void*) (temp+10), (void*) source,ll*sizeof (WCR)) ;
wfree_string(targ) ;
return (*targ=temp);
}
/* Helpers to convert from UTF8 to wide string
(zero characters are allowed) */
WCR *wfromstr_(WCR **targ, const CHR *source) {
SLO 1;
if ((1=(SLO)mbstowcs (NULL, source, 0)) <0
wfree_string(targ) ;
elsef
wmk_fst_buff (targ,1);
if (1&&((SLO) mbstowcs (*targ, source, 1+1)<0))
wfree_string(targ) ;
}

return *targ;

WCR *wfromstr (WCR **targ, const CHR *source) {
SLO i,l=len(source) ;
WCR *target=NULL, *wchr_nul=NULL, *temp=NULL;
wmk_fst_buff (&target,0) ;
wmk_fst_buff (&wchr nul,1);
*wchr_nul=(WCR)0;
for(i=0;i<l;i++)
if (wfromstr_(&temp, source+i)==NULL) {
wfree_string(&target) ;
break;

wcat (&target, temp) ;
while (* (source+i))

i+4;
if (i<1)

wcat (&target,wchr_nul) ;

wfree_string(&wchr_nul) ;
wfree_string(&temp) ;
wfree_string(targ) ;
return (*targ=target);

/* Helpers to convert from wide string to UTF8
(zero characters are allowed) */
CHR *wtostr (CHR **targ, const WCR *source) {
SLO 1;
if ((1=(SLO)wcstombs (NULL, source, 0)) <0)
free_string(targ) ;
else{
mk_fst_buff (targ,1);
if (1&& ((SLO)westombs (*targ, source,1+1)<0))
free_string(targ) ;

return *targ;

CHR *wtostr (CHR **targ, const WCR *source) {
SLO i,l=wlen (source) ;
CHR *target=NULL, *chr nul=NULL, *temp=NULL;
mk_fst_buff (&target,0);
sch2str(&chr nul,0) ;
for(i=0;i<l;i++)
if (wtostr_(&temp, source+i)==NULL) {
free_string(&target) ;
break;

cat (&target, temp) ;
while (* (source+i))

cat (&target,chr nul);

free_string(&chr_nul) ;
free_string(&temp) ;
free_string(targ) ;
return (*targ=target);

/* Helper to bring wide string to upper case */
WCR *wupper (WCR **targ, const WCR *source) {
ULO i,1;
l=wlen (wequ (targ, source)) ;
for(i=0;1i<1l;i++)
* (*targ+i) = (WCR) towupper ((wint_t) * (*targ+i)) ;
return *targ;
}
/* Helper to bring wide string to lower case */
WCR *wlower (WCR **targ, const WCR *source) {
ULO i,1;
l=wlen (wequ(targ, source)) ;
for(i=0;i<l;i++)
* (*targ+i) = (WCR) towlower ((wint_t)* (*targ+i));
return *targ;

}

/* Replacement for upper() */

CHR *upper (CHR **targ, const CHR *source) {
WCR *target=NULL;
wupper (&target,wfromstr (&target, source)) ;
wtostr (targ, target) ;
wfree_string(&target) ;
return *targ;

}

/* Replacement for lower() */

CHR *lower (CHR **targ, const CHR *source) {
WCR *target=NULL;
wlower (&target,wfromstr (&target, source)) ;
wtostr (targ, target) ;
wfree_string(&target) ;
return *targ;

/* Code has to be added to cflp udf C-interface */
extern int _Main (int argc, char *argvl[]l);

int main(int argc, char *argv[]) {
setlocale (LC_CTYPE,"");
return _Main_(argc,argv) ;

Example of private replacement for upper() and lower() functions added to the cflp_udf.o module

In order to use implemented functionality, we have to rebuild BMDFM with -WI,--allow-multiple-definition linker option
placing the cflp_udf.o module as the first module in the command line:

gcc -mé4 -pthread -03 -fPIC -c cflp udf.c

gcc -mé64 -pthread -Wl,--allow-multiple-definition
gcc -mé4 -pthread -Wl,--allow-multiple-definition
gcc -mé64 -pthread -Wl,--allow-multiple-definition
gcc -mé4 -pthread -Wl,--allow-multiple-definition

cflp udf.o fastlisp.o -o fastlisp -1Im -Ilpthread
cflp udf.o BMDFMldr.o -o BMDFMldr -1m -lpthread
cflp udf.o BMDFMsrv.o -o BMDFMsrv -1m -Ilpthread
cflp udf.o CPUPROC.o -o CPUPROC -1m -lpthread

Rebuilding BMDFM with -WI,--allow-multiple-definition linker option

BMDFM FAQ (“ A Little Boy and His BMDFM”)

=Page 34 of 38 =

http://bmdfm.com

35. How do you change internal operation set of VM language?

BMDFM provides additional interface (Internal ISA COP Interface) for direct access to the internal operation set of VM
language. This interface allows one to change names of the internal operations (ISA COP Mnemonics), add new operations or
delete existing operations with the purpose of creating specific operation sets (even in multiple national languages) or writing

plug-ins to load different operation sets at runtime:

nternal ISA COP Interface functions
#define CHR char
#define UCH unsigned char

void _internal ISA COP_mnemonics_get (CHR **1lst);
void _internal ISA COP_mnemonics_set (const CHR *list);

\ Function descriptions

_internal ISA COP_mnemonics_get() retrieves current ISA COP Mnemonics from
VM and _internal ISA COP_mnemonics_set() loads specified ISA COP Mnemonics
to VM as a list of space-separated position-dependent mnemonic names, e.g:

- PROGN SETQ ... RISE ERROR INFO MAPCAR

void _internal ISA COPs_get (CHR **tab);
void _internal ISA COPs_set (const CHR *table);

_internal ISA COPs_get() retrieves current ISA COP data from VM and
_internal ISA COPs_set() loads specified ISA COP data to VM as a list of
position-independent data blocks including <name>, <number of arguments>,
<return type>, <argument types> and <function addresses>, e.g:

- (PROGN -1 U "-" 4208000 0 0 0 0) (SETQ 2 U "VU" 4273008 4272832 4272656
4272480 4272304) (RISE_ERROR_INFO 2 U "IS" 4311552 4254800 0 0 0)
(MAPCAR 1 U "-" 4387184 0 0 0 0)

void _internal ISAext COPs_get (CHR **tab);
void _internal ISAext COPs_set (const CHR *table);

_internal ISAext COPs_get() retrieves current ISA extension COP data from
VM and _internal_ ISAext COPs_set() loads specified ISA extension COP data
to VM as a list of position-independent data blocks including similar

information as for internal ISA COPs get() and _internal ISA COPs_set().

UCH _internal ISA COP_mnemonics_vars_ ASCIIorUTF8_get (void);
void _internal ISA COP_mnemonics_vars_ASCIIorUTF8_set (
UCH ASCIIorUTFS8) ;

_internal ISA COP_mnemonics_vars_ASCIIorUTF8 get() reads and

_internal ISA COP_mnemonics_vars_ASCIIorUTF8_ set() updates a flag that
enables/disables using UTF8 charecter set for mnemonic names and variable
names.

Description of the Internal | SA COP Interface

In the following example, we add few new mnemonic definitions: " SECTION" (duplicate of " PROGN"), " REMARKS"
(duplicate of "COMMENTS") and "PRINTF" (duplicate of "OUTF"). Then we create a new function idoubled, which we
add to the ISA COP set under mnemonic name " IDOUBLED" and to the I SA extension COP set under mnemonic hame

"|DOUBLED_EXT":

Example of changing internal operation set of VM language (C code) \

#include "cflp_udf.h"

/* Internal ISA COP Interface declarations */

extern void _internal ISA COP_mnemonics_get (CHR **1st);
extern void _internal ISA COP_mnemonics_set (const CHR *list);
extern void _internal ISA COPs_get (CHR **tab) ;

extern void _internal ISA COPs_set (const CHR *table) ;

extern void _internal ISAext COPs_get (CHR **tab);

extern void _internal ISAext COPs_set(const CHR *table);

/* Definition of a new function IDOUBLED */
void func_ idoubled(const ULO *dat_ptr,
struct fastlisp_data *ret_dat) {
ret_ival (dat_ptr, &ret_dat->value.ival) ;
if (noterror()) {
ret_dat->single=1;
ret_dat->type='I";
ret_dat->value.ival*=2;
}
return;
}
void func__idoubled_j((const ULO *dat_ptr,
struct fastlisp data *ret_dat)
ret_dat->disable ptr=1;
dat_ptr=* ((ULO**)dat_ptr) ;
(* (fcall) *dat_ptr) (dat_ptr+l,ret_dat);
if (noterror ()
ret_dat->value.ival*=2;
return;

}

/* Code has to be added to cflp udf C-interface */
int main(int argc, char *argv(]) {
CHR buff [200], *ISA mnemonics=NULL,
*temp=NULL, *templ=NULL, *temp2=NULL, *temp3=NULL,

bi

/* Replace the standard mnemonic names defined in table */
_internal ISA COP_mnemonics_get (&ISA mnemonics) ;
lcat (&ISA mnemonics, space (&temp3, 1)) ;
cat (&ISA_mnemonics, temp3) ;
get_std buff (&temp, (CHR*) &table) ;
while (len(temp)) {

1sp_head(&templ, temp) ;

lsp_tail (&temp, temp) ;

lcat (&templ, temp3) ;

cat (&templ, temp3) ;

1sp_head (&temp2, temp) ;

lsp_tail (&temp, temp) ;

lcat (&temp2, temp3) ;

cat (&temp2, temp3) ;

strtran (&ISA mnemonics, ISA mnemonics, templ, temp2) ;

alltrim(&ISA mnemonics, ISA mnemonics) ;
internal ISA COP_mnemonics_set (ISA mnemonics) ;

table[]={
" PROGN SECTION" /* Replacement for the standard */
" COMMENTS REMARKS" /* mnemonic names */
" OUTF PRINTF"

/* If needed, the following code fragment keeps original
mnemonics too. */
_internal ISA COPs_get (&ISA mnemonics) ;
get_std buff (&temp, (CHR*) &table) ;
while (len(temp)) {
1sp_head (&templ, temp) ;
lsp_tail (&temp, temp) ;
lcat (&templ,get_std_buff (&temp3, " (")) ;
lsp_head (&temp2, temp) ;
1lsp_tail (&temp, temp) ;
lcat (&temp2, temp3) ;
cat (&templ, space (&temp3, 1)) ;
cat (&temp2, temp3) ;
if (at (temp2, ISA mnemonics))
cat (&ISA_mnemonics, strtran(&temp3,lsp head (&temp3,
rightl (&temp3, ISA mnemonics,at (temp2, ISA mnemonics)-1)),
temp2, templ)) ;
}

_internal ISA COPs_set (ISA_mnemonics) ;

/* Add new function IDOUBLED to ISA COP set */

_internal ISA COPs_get (&ISA mnemonics) ;

snprintf (buff, sizeof (buff)," (IDOUBLED 1 I \"I\" %1d %1d 0 0 0)",
(SLO) &func__idoubled, (SLO) &func__idoubled j);

cat (&ISA_mnemonics,get_std buff (&temp,buff));

_internal ISA COPs_set (ISA_mnemonics) ;

/* Add new function IDOUBLED EXT to ISA extension COP set */

_internal ISAext COPs_get (&ISA_mnemonics) ;

snprintf (buff, sizeof (buff)," (IDOUBLED_EXT 1 I \"I\" %1d)",
(SLO) &func__idoubled) ;

cat (&ISA_mnemonics,get_std buff (&temp,buff));

internal ISAext COPs_set (ISA_mnemonics) ;

free string (&ISA mnemonics) ;
free_string(&temp) ;
free_string(&templ) ;
free_string(&temp2) ;
free_string(&temp3) ;

return _Main_(argc,argv) ;

/*

- Note that new functions added via the _internal ISAext COPs_set()
interface call are considered by the BMDFM static scheduler as
coarse-grain functions (similar to new functions added via
definitions in the configuration profile or via C-interface).

- New functions added via the _internal ISA COPs_set() interface
call are considered by the BMDFM static scheduler as fine-grain
functions.

(setqg var_int 2)
(printf " (IDOUBLED_EXT 2)

= %1d\n"
$1d\n"

(IDOUBLED_EXT var_int))

(printf " (IDOUBLED 2) =

(IDOUBLED var int))

(SETQ@I MAIN:VAR_INT@I 2)
(SETQ@I MAIN:TMP__ 000000001 (IDOUBLED EXT@J MAIN:VAR_INT@I)
(SETQ@S MAIN:TMP__000000002@S
(PRINTF " (IDOUBLED_EXT 2) =
(SETQ@S MAIN:TMP__ 000000001
(PRINTF " (IDOUBLED 2) = %$1d\n"

$1d\n" MAIN:TMP__000000001))

(IDOUBLED@J MAIN:VAR_INT@I)))

*/

Example of changing internal operation set of VM language added to the cflp_udf.o module

BMDFM FAQ (“ A Little Boy and His BMDFM”)

=Page 35 of 38 =

http://bmdfm.com

36. How do you run BMDFM on IBM mainframe z/OS?

IBM z/OS assumes EBCDIC character set by default, thus, ASCII input/output and ASCII files will not be processed
correctly without additional conversion:

Terminal (S/390; z/0S)
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -g hello

Failed while opening file ~“hello'.

ProcName=BMDFMldr, PID=33554853, tID=33554853, Module=fastlisp, Function=read from file(), Locat
ion=28, SysCall=open(), errno=129 : EDC5129I No such file or directory. (errno2=0x05620062)
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -q hello.flp

[ErrCode=2] In function “Main': invalid numeric constant: {@

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > I

BMDFM failsto process ASCII files on zZ/OS with no conversion by default

The issue can be easily solved. The following environment variables need to be set in order to force automatic conversion
from/to EBCDIC/ASCII on the fly. We might also need tagging all ASCII flp and cfg files:

Terminal (S/390; z/0S)

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM :
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM :
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM :
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM :
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM :

export _BPXK_AUTOCVT="ON"
export _CEE RUNOPTS="FILETAG (AUTOCVT,AUTOTAG) "
export _TAG REDIR ERR="txt"

export _TAG REDIR IN="txt"

export _TAG REDIR OUT="txt"

VVVVYV

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > chtag -tvc IBM-1047 *.cfg *.flp

T=off 0 ? ----> T=on IBM-1047 E hello.flp
T=off 0 ? ----> T=on IBM-1047 E arch.flp

v

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : BMDFMldr -q hello.flp
Hello, world!
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -q arch.flp

Machine architecture: 64-bit Big-Endian.
Format of executable: z/0S Unix executable (amod64).

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > I

BMDFM processes ASCI| files correctly on z/OS with automatic conversion

BMDFM FAQ (“ A Little Boy and His BMDFM”) = P@e 36 of 38 = http://bmdfm.com

37. Isthere something in common between BMDFM and a multi-issue dynamic scheduling CPU?

Both are dataflow machines and have a lot of common internal architectural solutions. Understanding of the following
similarities helps us to use BMDFM more efficiently:

Multi-issue dynamic scheduling
processor

Hardware dataflow machine that uses
Tomasulo’s algorithm to exploit
instruction-level parallelism.

‘ BMDFM

Software datafl ow machine that uses the
Tagged-token principle to exploit thread-
level parallelism of virtual machine
instructions.

Dataflow is local within one processor chip.
Execution units are the processing el ements
of the ALU and FPU.

Dataflow is global within multi-core SMP
machine. Execution units are the processors
and cores themselves.

Tomasulo’s approach defines the
reservation station as a unit that is used for
register renaming.

BMDFM defines contexted data structure
for each variable using nearly the same
principle.

To feed its own dataflow avoiding stalls, the
processor requires multiple flows of the
instruction fetch.

To feed the BMDFM dataflow engine
avoiding bottlenecks, the BMDFMIdr
External Task Loader and Scheduler
sustains multiple flows of marshaled
clusters.

To fill dataflow resources more efficiently, a
concept of simultaneous multithreading is
used that naturally matches the register
renaming principles.

To fill dataflow resources more efficiently,
many BMDFMIdr processes can connect to
the Task Connection Zone of BMDFM
simultaneously, which naturally matches the
contexted data principles.

To avoid stallsin the internal RI SC-
pipelines, instruction prefetch and branch
prediction units are used.

Same ideas are used to avoid stalls: ready
VM-instructions are prefetched into the
CPUPROC pipelines; recurrenceis
predicted to reduce scheduling effort for
tagging ready VM-instructions.

Predicated instructions are used to shift
conditional branches from the pipeline into
the logic of the instruction itself.

User-defined coarse-grain VM-instructions
are defined as seamless blocks to move
scheduling-expensive pieces of code into the
logic of such aVM-ingtruction itself.

BMDFM FAQ (“ A Little Boy and His BMDFM”)

Comparison table

= Page 37 of 38 =

http://bmdfm.com

38. How isthe BMDFM Shared Memory Pool architected?

The BMDFM Shared Memory Pool is divided into banks. Each bank is protected by a semaphore. Data chunks are
alocated starting from lower addresses of the bank. A bank’s control structures are in the higher addresses. These control
structures are two Red-Black-Trees of descriptors (to be more precise, two Red-Black-Trees of RBT-nodes where external
nodes store the descriptors): one RBT with descriptors pointing to the allocated chunks of data, and the other RBT with
descriptors pointing to the holes of free space. Each RBT-node has a reserved field. Because all RBT-nodes are allocated
linearly, it makes it possible that all reserved fields comprise a Max-heap Priority Queue, which is used as storage for pointers
to unused RBT-nodes.

Thus, alocation and freeing of memory blocks basically invoke a sequence of insert/del ete operations in two Red-Black-
Trees (O(log n)). Each RBT, in its own turn, uses the Max-heap Priority Queue to alocate its internal and external nodes (again
O(log n)). Max-heap guarantees that the root of the Priority Queue always points to an unused RBT-node with the highest
address. This address and such a node will be used first, ensuring a compact node allocation and making life of RBT node lazy
garbage collector much easier.

Shared Memory Pool ’ Sync Sema4 | ‘ Bank Selector Round-
Robin
Bank Sync Sema4 Bank Sync Sema4 Bank Sync Sema4
Bank
Addr Low Addr High
Allocated Data Red-Black Trees of descriptors
Max-heap Priority Queue of Unused RBT Nodks
x~ ~ e
= = ry L—gl — &
2 2 — “— o JoeSto o5 es |2 8
o [(3} S 4 7To | 5 = S S =ic S
] 2] S S 2 o= Fes Bs2 [BE &
® = 5 = zZ 8 7=, o == c o m o
8 o S ree = T O = = T S x o
- o = [” Space & =IO (o Sl SCM SEll 5
2 Q2 o 3 i B = il mEN o=
o 3 O|BE|F |8%|Z%|f3|§S
2 o | @ = B =R
H B - B = B=: =
< < 5 x © =) Xz 52 =) T 2 s
L D ® 3}
ac
L) ‘4 | 4 | 4 \

T

* Banks are thread-safe for parallel allocation
* Alloc() and free() invoke RBT insert/delete operation and Max-heap queuing for RBT nodes
*When free space exhausted, the RBT node lazy garbage collector is triggered or next bank is chosen

The architecture of the Shared Memory Pool

The shmempool command of the BMDFM Server console displays current state of the Shared Memory Pool:

Output of shmempool

Console input: shmempool

[SysMsg] : ========== System time is Fri Nov 13 18:38:58 2015. ==========
[MemPool] : * STATUS OF THE SHARED MEMORY DRIVEN BY THE RE-ENTRANT CODE *
[MemPool] : Shared memory segment ID=294915.

[MemPool] : SHMEM POOL_SIZE: 500000000Bytes (10 BANKS of 49999896 each).
[MemPool] : Shared memory segment has been attached at 0x000000003B9ACO000.
[MemPool] : Shared memory segment permissions are: 0660=="rw-rw----".
[MemPool] : Using POSIX sema4 sync instead of SVR4 sema4 sync.

[MemPool] : Red-Black Tree (RBT) node size: 72Bytes.

[MemPool] : Number of reserved RBT-nodes: 13.

[MemPool] : <BANK#: Entities, FirstEntSpaceAfter, Free(Max), Fragmentation.>
[MemPool] : B#0: Ent=164, FA=163, Free=49613448(49613448), Frag=0.00%.
[MemPool] : B#1l: Ent=164, FA=163, Free=49467496(49467496), Frag=0.00%.
[MemPool] : B#2: Ent=164, FA=163, Free=49567056(49567056), Frag=0.00%.
[MemPool] : B#3: Ent=164, FA=163, Free=49609376(49609376), Frag=0.00%.
[MemPool] : B#4: Ent=163, FA=162, Free=49527400(49527400), Frag=0.00%.
[MemPool] : B#5: Ent=163, FA=162, Free=49536488(49536488), Frag=0.00%.
[MemPool] : B#6: Ent=163, FA=162, Free=49607512(49607512), Frag=0.00%.
[MemPool] : B#7: Ent=163, FA=162, Free=49615568(49615568), Frag=0.00%.
[MemPool] : B#8: Ent=163, FA=162, Free=49614240(49614240), Frag=0.00%.
[MemPool] : B#9: Ent=163, FA=162, Free=49612000(49612000), Frag=0.00%.
[MemPool] : Memory Pool TOTAL:

[MemPool] : Number of allocated entities: 1634.

[MemPool] : Number of all/(LazyGarbageCollected) RBT-nodes: 3278/ (3278).
[MemPool] : Allocated size: 3991640Bytes.

[MemPool] : Free space/ (LargestFreeBlock): 495770584/ (49615568)Bytes.
[MemPool] : Fragmentation of holes: 0.00%.

[MemPool] : Number of extra multicast references: 0.

Output of the shmempool command on the BMDFM Server console

<
<EOF>

BMDFM FAQ (“ A Little Boy and His BMDFM”) = page 38 of 38 = http://bmdfm.com

