
BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 1 of 38 =

BMDFM FAQ
(“A Little Boy and His BMDFM”)

“And now, let's plunge into a dense fog!” :)

1. Why is the true multi-process model used in BMDFM additionally to multithreading?
2. Where do you see version/build/revision of BMDFM?
3. How do you solve termcap issues?
4. How do you change the default shared memory and semaphore limits on Linux?
5. How do you find out whether the OS is able to provide enough semaphores for BMDFM?
6. How do you start the BMDFM Server detached from a terminal and control it later?
7. How do you start many instances of BMDFM on the same machine?
8. How do you get a list of recognizable parameters for the BMDFM configuration profile?
9. Where can it be necessary to change the mounting address of the shared memory segment?

10. Is there any difference between a memory descriptor and a memory address?
11. How does BMDFM handle strings internally?
12. Why use USER_IO?
13. How do you implement termcap via USER_IO?
14. How do you evaluate the VM language expressions from C/C++ code?
15. How do you allocate/free shared memory from C/C++ code?
16. How do you attach to the BMDFM shared memory and allocate permanent data there?
17. What is the optimal number of the BMDFM processes?
18. How do you implement a parallel recursive Fibonacci function?
19. How do you rewrite application example from the BMDFM manual in pure VM language?
20. How do you enable parallel reduction operation?
21. How do you find out runtime error location in expression typed on BMDFM Server console?
22. How serious is the performance degradation of pure unparalleled VM byte code?
23. How does the relaxed consistency model of shared memory influence BMDFM?
24. How does the BMDFM dataflow engine process an array?
25. How do you enable late binding for a precompiled program?
26. How do you fix unresolved dependencies introduced by vendor's proprietary compiler?
27. How do you build fastlisp.exe with MS VS linking against cygwin1.dll?
28. How do you start BMDFM on Windows with Cygwin?
29. Why cannot sem_maxval be determined for POSIX sema4?
30. How do you run BMDFM on Linux with glibc that is older than required by BMDFM?
31. Why does it seem like BMDFM keyboard input is delayed on Linux Alpha-based machines?
32. How do you add “NUMA-awareness” to BMDFM?
33. How do you resolve lcc linkage issues on e2k Linux?
34. How do you overwrite internal functions of BMDFM with your own functions?
35. How do you change internal operation set of VM language?
36. How do you run BMDFM on IBM mainframe z/OS?
37. Is there something in common between BMDFM and a multi-issue dynamic scheduling CPU?
38. How is the BMDFM Shared Memory Pool architected?

* * *

1. Why is the true multi-process model used in BMDFM additionally to multithreading?

There are a couple of reasons explaining why the true multi-process model is chosen for the BMDFM implementation:

• The threading models are different from OS kernel to OS kernel. Threading model Mx1 runs all threads of the user
process space through a single thread of kernel space relying on the kernel scheduler only. Threading model 1x1 runs
each thread of the user process space through a separate dedicated thread of kernel space relying on the kernel
scheduler only. Threading model MxN maps M threads of the user process space to N threads of kernel space relying
on both the kernel scheduler and the user process multiplexing scheduler. In order to make BMDFM portable across
different SMP platforms and the OS kernels, the true multi-process model is chosen. Such a solution compiles and runs
under all OS kernels in the same way. No additional user process multiplexing scheduler is required.

• Performance is the most important point. The multi-process model is more scalable and has better performance in
practice than the multithreading model when running tasks on a big iron. Multithreading might work faster for
multicores and many-cores.

One serious reason that speaks for a threading approach is that it is a much cheaper way to create/dismiss a thread compared

to the effort spent for a process fork. However, BMDFM does not fork processes at runtime; all processes are created at the
initialization phase only. Note that BMDFM can be configured to run in the multithreaded mode as well as in the multi-process
mode.

Note that POSIX-semaphores scale and perform better than SVR4-semaphores. BMDFM can be configured using either
POSIX-semaphores or SVR4-semaphores as synchronization primitives (on platforms where POSIX-semaphores are
available for inter-process synchronization).

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 2 of 38 =

2. Where do you see version/build/revision of BMDFM?

The software revision can be seen in the command line prompt for each BMDFM utility as shown in the examples below:

Terminal (Intel x86-64; Linux) Terminal (SGI MIPS; IRIX)
$ fastlisp
fastlisp ==> stderr:
/* fastlisp.c - FastLisp Compiler with Runtime Environment.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 05-05-1996 10:10:29.18pm */
 Usage0: fastlisp -h|--help
 Usage1: fastlisp -V|--versions
 Usage2: fastlisp [-q|--quiet] <FastLisp_file_name> [args...]
 Usage3: fastlisp [-sd|--showDebugInfo] <FastLisp_file_name> [args...]
 Usage4: fastlisp [-c|--compile2disk] <FastLisp_file_name> [args...]
 Usage5: fastlisp [-cm|--compileMinimized2disk] <FastLisp_file_name> [args...]
 Usage6: fastlisp [-q|--quiet] <Precompiled_FastLisp_file_name>
 Usage7: fastlisp [-sd|--showDebugInfo] <Precompiled_FastLisp_file_name>

Runtime environment variable dump:
 FAST_LISP_CODE_PRINT__TERM_WIDE=0;
 FAST_LISP_CODE_PRINT__CFG_UDF=1;
 FAST_LISP_CODE_PRINT__MODIFIED_SRC=1;
 FAST_LISP_CODE_PRINT__DUMPED_SRC=1;
 FAST_LISP_CODE_PRINT__COMPILED=1;
 FAST_LISP_CODE_PRINT__LINKED=1;
 FAST_LISP_CODE_PRINT__DECOMPILED=1;
 FAST_LISP_MAPCAR_WITH_DECOMPILER=1;
 FAST_LISP_COMPILE_JUSTIFIED_TYPES=1;
 FAST_LISP_COMPILE_WITH_DEBUGINFO=1;

The following environment variable:
 FAST_LISP_CFGPROFILE_path="fastlisp.cfg"
specifies a configuration profile that can be used for the Global FastLisp
function definitions. The format of the configuration profile is:
 <(DEFUN ...)>{ <(DEFUN ...)>} # <EOF>.

Compiled on: "Linux RedHatELS72VM 3.10.0-514.26.2.el7.x86_64 #1 SMP Fri Jun 30
05:26:04 UTC 2017 x86_64".
Compiled by: "gcc version 4.8.5 20150623 (Red Hat 4.8.5-11) (GCC) as [ELF 64-bi
t LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared lib
s), for GNU/Linux 2.6.32, stripped] at systime Fri Jul 13 13:01:55 CEST 2018".
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$ _

$ fastlisp
fastlisp ==> stderr:
/* fastlisp.c - FastLisp Compiler with Runtime Environment.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 05-05-1996 10:10:29.18pm */
 Usage0: fastlisp -h|--help
 Usage1: fastlisp -V|--versions
 Usage2: fastlisp [-q|--quiet] <FastLisp_file_name> [args...]
 Usage3: fastlisp [-sd|--showDebugInfo] <FastLisp_file_name> [args...]
 Usage4: fastlisp [-c|--compile2disk] <FastLisp_file_name> [args...]
 Usage5: fastlisp [-cm|--compileMinimized2disk] <FastLisp_file_name> [args...]
 Usage6: fastlisp [-q|--quiet] <Precompiled_FastLisp_file_name>
 Usage7: fastlisp [-sd|--showDebugInfo] <Precompiled_FastLisp_file_name>

Runtime environment variable dump:
 FAST_LISP_CODE_PRINT__TERM_WIDE=0;
 FAST_LISP_CODE_PRINT__CFG_UDF=1;
 FAST_LISP_CODE_PRINT__MODIFIED_SRC=1;
 FAST_LISP_CODE_PRINT__DUMPED_SRC=1;
 FAST_LISP_CODE_PRINT__COMPILED=1;
 FAST_LISP_CODE_PRINT__LINKED=1;
 FAST_LISP_CODE_PRINT__DECOMPILED=1;
 FAST_LISP_MAPCAR_WITH_DECOMPILER=1;
 FAST_LISP_COMPILE_JUSTIFIED_TYPES=1;
 FAST_LISP_COMPILE_WITH_DEBUGINFO=1;

The following environment variable:
 FAST_LISP_CFGPROFILE_path="fastlisp.cfg"
specifies a configuration profile that can be used for the Global FastLisp
function definitions. The format of the configuration profile is:
 <(DEFUN ...)>{ <(DEFUN ...)>} # <EOF>.

Compiled on: "IRIX64 SGImipsIRIX 6.5 07202013 IP35".
Compiled by: "MIPSpro Compilers: Version 7.4.4m as [ELF 64-bit MSB mips-4 dynam
ic executable MIPS - version 1] at systime Fri Jul 13 13:05:43 MET DST 2018".
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$ _

Terminal (Sun SPARC; SunOS) Terminal (HP PA-RISC; HP-UX)
$ BMDFMldr -h
BMDFMldr ==> stdout:
/* BMDFMldr.c - The External Task PROC Unit (The Loader and Listener Pair)
 for the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 08-09-1996 4:59:39.14pm */
 Usage0: BMDFMldr -h|--help
 Usage1: BMDFMldr -V|--versions
 Usage2: BMDFMldr [-q|--quiet] <FastLisp_file_name> [args...]
 Usage3: BMDFMldr [-sd|--showDebugInfo] <FastLisp_file_name> [args...]
 Usage4: BMDFMldr [-c|--compile2disk] <FastLisp_file_name> [args...]
 Usage5: BMDFMldr [-q|--quiet] <Precompiled_FastLisp_file_name>
 Usage6: BMDFMldr [-sd|--showDebugInfo] <Precompiled_FastLisp_file_name>

Runtime environment variable dump:
 BM_DFM_CODE_PRINT__TERM_WIDE=0;
 BM_DFM_CODE_PRINT__CFG_UDF=1;
 BM_DFM_CODE_PRINT__MODIFIED_SRC=1;
 BM_DFM_CODE_PRINT__DUMPED_SRC=1;
 BM_DFM_CODE_PRINT__LINKED=1;
 BM_DFM_CODE_PRINT__DFM_UNICODE=1;
 BM_DFM_MAPCAR_WITH_DECOMPILER=1;
 BM_DFM_COMPILE_JUSTIFIED_TYPES=1;
 BM_DFM_COMPILE_WITH_DEBUGINFO=1;
 BM_DFM_CONNECTION_FILE_path="/tmp/.BMDFMsrv";
 BM_DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "SunOS SunOS_Ultra45 5.10 Generic_147147-26 sun4u sparc".
Compiled by: "cc: Sun C 5.10 SunOS_sparc Patch 141861-09 2012/08/15 as [ELF 64-
bit MSB executable SPARCV9 Version 1, dynamically linked, stripped] at systime
Fri Jul 13 13:08:19 CEST 2018".
$ _

$ BMDFMldr -h
BMDFMldr ==> stdout:
/* BMDFMldr.c - The External Task PROC Unit (The Loader and Listener Pair)
 for the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 08-09-1996 4:59:39.14pm */
 Usage0: BMDFMldr -h|--help
 Usage1: BMDFMldr -V|--versions
 Usage2: BMDFMldr [-q|--quiet] <FastLisp_file_name> [args...]
 Usage3: BMDFMldr [-sd|--showDebugInfo] <FastLisp_file_name> [args...]
 Usage4: BMDFMldr [-c|--compile2disk] <FastLisp_file_name> [args...]
 Usage5: BMDFMldr [-q|--quiet] <Precompiled_FastLisp_file_name>
 Usage6: BMDFMldr [-sd|--showDebugInfo] <Precompiled_FastLisp_file_name>

Runtime environment variable dump:
 BM_DFM_CODE_PRINT__TERM_WIDE=0;
 BM_DFM_CODE_PRINT__CFG_UDF=1;
 BM_DFM_CODE_PRINT__MODIFIED_SRC=1;
 BM_DFM_CODE_PRINT__DUMPED_SRC=1;
 BM_DFM_CODE_PRINT__LINKED=1;
 BM_DFM_CODE_PRINT__DFM_UNICODE=1;
 BM_DFM_MAPCAR_WITH_DECOMPILER=1;
 BM_DFM_COMPILE_JUSTIFIED_TYPES=1;
 BM_DFM_COMPILE_WITH_DEBUGINFO=1;
 BM_DFM_CONNECTION_FILE_path="/tmp/.BMDFMsrv";
 BM_DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "HP-UX c8k-HPUX B.11.23 U 9000/785 4042425048".
Compiled by: "HP ANSI C / C++ B3910B C.03.70 (HP92453-01 B.11.11.16 HP C Compil
er) as [ELF-64 executable object file - PA-RISC 2.0 (LP64) / HPPA64 (PA-RISC2.0
W)] at systime Fri Jul 13 13:10:52 METDST 2018".
$ _

Terminal (IBM POWER RS/6000; AIX) Terminal (DEC Alpha RISC; Tru64 OSF1)
$ BMDFMsrv -h
BMDFMsrv ==> stdout:
/* BMDFMsrv.c - The "Broken Mind" Data-Flow Machine SMP MIMD Server Unit.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 20-07-1996 2:49:49.58pm */
 Usage0: BMDFMsrv
 Usage1: BMDFMsrv -h|--help
 Usage2: BMDFMsrv -V|--versions
 Usage3: BMDFMsrv [-d|--daemonize]
 Usage4: BMDFMsrv [-d|--daemonize] -n|--no-logs
 Usage5: BMDFMsrv [-d|--daemonize] -l|--logfile <log_file_name>

Runtime environment variable dump:
 BM_DFM_MAPCAR_WITH_DECOMPILER=1;
 BM_DFM_COMPILE_JUSTIFIED_TYPES=1;
 BM_DFM_COMPILE_WITH_DEBUGINFO=1;
 BM_DFM_CFGPROFILE_path="./BMDFMsrv.cfg";
 BM_DFM_PROCstat_path="./PROCstat";
 BM_DFM_CPUPROC_path="./CPUPROC";
 BM_DFM_OQPROC_path="./OQPROC";
 BM_DFM_IORBPROC_path="./IORBPROC";
 BM_DFM_CONNECTION_FILE_path="/tmp/.BMDFMsrv";
 BM_DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";
 BM_DFM_EMERGENCY_IPC_FILE_path="./freeIPC.inf";
 BM_DFM_LOGFILE_KEEP_NxSIZE="10x10000000";
 BM_DFM_PROCLOGFILE_KEEP_NxSIZE="10x10000000";
 BM_DFM_PROCLOGFILE_path="./PROCs.log";

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "AIX IBMpowerCHRP 1 7 00CE8BB34C00".
Compiled by: "IBM XL C/C++ for AIX, V13.1.3 (5725-C72, 5765-J07) Version: 13.01
.0003.0000 as [64-bit XCOFF executable or object module] at systime Fri Jul 13
13:09:43 DFT 2018".
$ _

$ BMDFMtrc –h
BMDFMtrc ==> stdout:
/* BMDFMtrc.c - The Interactive Tracer Unit
 for the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 18-09-1996 1:22:49.50am */
 Usage0: BMDFMtrc
 Usage1: BMDFMtrc -h|--help
 Usage2: BMDFMtrc -V|--versions
 Usage3: BMDFMtrc -l|--log-last-screen [<log_file_name>]
 Usage4: BMDFMtrc -L|--log-all-screens [<log_file_name>]

Runtime environment variable dump:
 BM_DFM_TRACER_LOG__TERM_WIDE=0;
 BM_DFM_CONNECTION_FILE_path="/tmp/.BMDFMsrv";
 BM_DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "OSF1 DECtru64alpha V5.1 2650 alpha".
Compiled by: "Compaq C V6.5-303 (dtk) on HP Tru64 UNIX V5.1B (Rev. 2650) Compil
er Driver V6.5-302 (dtk) cc Driver as [COFF format alpha dynamically linked, de
mand paged executable or object module stripped - version 3.14-2] at systime Fr
i Jul 13 13:10:34 WEST 2018".
$ _

Terminal (Intel Itanium IA-64 EPIC VLIW; HP-UX) Terminal (Intel x86-64; Apple MacOS X)
$ IORBPROC
/* IORBPROC.c - The IORBP PROC
 a part of the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 20-07-1996 2:49:49.58pm */
Error: wrong number of arguments.
Usage: IORBPROC should be used by the BM_DFM Server only.

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "HP-UX IA64hpux B.11.31 U ia64 2897190201".
Compiled by: "cc: HP C/aC++ B3910B A.06.28 [Nov 21 2013] as [ELF-64 executable
object file - IA64] at systime Fri Jul 13 13:18:27 MESZ 2018".
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$ _

$ OQPROC
/* OQPROC.c - The OQ PROC
 a part of the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 20-07-1996 2:49:49.58pm */
Error: wrong number of arguments.
Usage: OQPROC should be used by the BM_DFM Server only.

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "Darwin MacIntel 14.5.0 Darwin Kernel Version 14.5.0: Tue Apr 11 1
6:12:42 PDT 2017; root:xnu-2782.50.9.2.3~1/RELEASE_X86_64 x86_64".
Compiled by: "Apple LLVM version 7.0.2 (clang-700.1.81) as [Mach-O 64-bit execu
table x86_64] at systime Fri Jul 13 13:02:16 CEST 2018"
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$ _

Terminal (Intel Xeon Phi MIC; Linux) Terminal (MCST Elbrus VLIW; Linux)
$ CPUPROC
/* CPUPROC.c - The CPU PROC
 a part of the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 20-07-1996 2:49:49.58pm */
Error: wrong number of arguments.
Usage: CPUPROC should be used by the BM_DFM Server only.

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "Linux RedHatELS62VM 2.6.32-220.13.1.el6.x86_64 #1 SMP Thu Mar 29
11:46:40 EDT 2012 x86_64".
Compiled by: "icc Intel(R) C Intel(R) 64 Compiler XE for applications running o
n Intel(R) 64, Version 15.0.0.090 Build 20140723 (Copyright (C) 1985-2014 Intel
 Corporation. All rights reserved.) as [ELF 64-bit LSB executable, Intel K1OM,
version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.4.0, s
tripped] at systime Fri Jul 13 13:01:31 CEST 2018".
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$ _

$ PROCstat
/* PROCstat.c - The PROC stat
 a part of the "Broken Mind" Data-Flow Machine.

 Original 32-bit version for UNIX was founded && written by:
 Sancho Mining 20-07-1996 2:49:49.58pm */
Error: wrong number of arguments.
Usage: PROCstat should be used by the BM_DFM Server only.

VERSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9.".
Compiled on: "Linux debian4babayan-64 2.6.33-elbrus.033.3.42 #1 SMP Thu Apr 23
22:28:28 MSK 2015 e2k".
Compiled by: "lcc:1.19.11:Dec-13-2014:e2k-2c+-linux (gcc version 4.4.0 compatib
le) as [ELF 64-bit LSB executable, MCST Elbrus, version 1 (SYSV), dynamically l
inked (uses shared libs), for GNU/Linux 2.6.33, stripped] at systime Fri Jul 13
 14:15:11 MSK 2018".
RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.
$ _

Terminals

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 3 of 38 =

3. How do you solve termcap issues?

BMDFM uses the standard termcap database for the terminal capabilities. Should BMDFM display incorrectly, please use
the following troubleshooting procedures:

Check the $TERM environment variable whether it contains a correct terminal name, which can be found in the termcap
database. If not, then set the one that is correct. If the standard termcap database is missing in the system then use the one
provided with the BMDFM distribution:

Terminal (bash)
$ export TERM=vt100
$ export TERMCAP=/<full_path>/termcap
$ _

Terminal

If the running BMDFM instance is daemonized (detached from a terminal) then termcap is initialized with the following
default termcap settings skipping all roundtrips to the termcap database:

BMDFMsrv.log (termcap record)
[TermCap]: TERM=ansi.sys. Init TERMCAP for the BM_DFM console done.
[TermCap]: Current termcap settings:
[TermCap]: TERM_TYPE=`ansi.sys'; LINES_TERM=`25'; COLUMNS_TERM=`80';
[TermCap]: CLRSCR_TERM=`\e[m\e[7h\e[2J'; REVERSE_TERM=`\e[7m'; BLINK_TERM=`';
[TermCap]: BOLD_TERM=`\e[1m'; NORMAL_TERM=`\e[m'; HIDECURSOR_TERM=`';
[TermCap]: SHOWCURSOR_TERM=`'; GOTOCURSOR_TERM=`\e[%d;%dH'.
[TermCap]: Remote terminal device driver installed.

Fragment of BMDFMsrv.log file related to boot logs

The BMDFM runtime prefixes user’s VM code with termcap variables. The variable names are the same as for the
corresponding termcap functions and the assigned values are taken for the current terminal:

fastlisp/BMDFMldr log (PATTERN No# 2 for fastlisp or No# 3 for BMDFMldr)
Modifying the FastLisp code (PATTERN No# 2)...
 (PROGN {(SETQ <termcap_var> <termcap_val>) }<FastLisp_prog>)
. . .
(PROGN
 (SETQ@S MAIN:TERM_TYPE@S "linux")
 (SETQ@I MAIN:LINES_TERM@I 25)
 (SETQ@I MAIN:COLUMNS_TERM@I 80)
 (SETQ@S MAIN:CLRSCR_TERM@S "\e[H\e[J")
 (SETQ@S MAIN:REVERSE_TERM@S "\e[7m")
 (SETQ@S MAIN:BLINK_TERM@S "\e[5m")
 (SETQ@S MAIN:BOLD_TERM@S "\e[1m")
 (SETQ@S MAIN:NORMAL_TERM@S "\e[m")
 (SETQ@S MAIN:HIDECURSOR_TERM@S "\e[?25l")
 (SETQ@S MAIN:SHOWCURSOR_TERM@S "\e[?25h")
 (SETQ@S MAIN:GOTOCURSOR_TERM@S "\e[%i%d;%dH")

Fragments of fastlisp/BMDFMldr log related to initialization phase

A user can choose to use termcap functions or variables. However, remember that the termcap functions are evaluated by
the CPUPROC processes that could be started somewhere on a different terminal having different termcap settings:

VM code fragment using termcap functions
(if (|| (|| (!= term_type (term_type)) (!= lines_term (lines_term))) (!= columns_term (columns_term)))
 (while 1 (progn
 (outf "\nChoose terminal:\n" nil)
 (outf " 0 - TERM_TYPE=`%s';" term_type) (outf " LINES_TERM=`%d';" lines_term)
 (outf " COLUMNS_TERM=`%d';\n" columns_term) (outf " 1 - TERM_TYPE=`%s';" (term_type))
 (outf " LINES_TERM=`%d';" (lines_term)) (outf " COLUMNS_TERM=`%d'.\n" (columns_term))
 (outf "Enter your choice (0 or 1) or press 'q' to quit:" nil)
 (setq ch (upper (scan_console 5000000)))
 (if (|| (== ch "Q") (== (asc ch) 3))
 (exit)
 (if (== ch "0")
 (break)
 (if (== ch "1")
 (progn
 (setq term_type (term_type)) (setq lines_term (lines_term))
 (setq columns_term (columns_term)) (setq clrscr_term (clrscr_term))
 (setq reverse_term (reverse_term)) (setq blink_term (blink_term))
 (setq bold_term (bold_term)) (setq normal_term (normal_term))
 (setq hidecursor_term (hidecursor_term)) (setq showcursor_term (showcursor_term))
 (setq gotocursor_term (gotocursor_term -1 -1))
 (break)
)
 (if (== (asc ch) 0)
 nil
 (outf "\n\n*** Invalid selection ***\n" nil)
)
)
)
)
))
 nil
)

VM code fragment

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 4 of 38 =

4. How do you change the default shared memory and semaphore limits on Linux?

On Linux, the shared memory limits (both shmmax and shmall) might be set to a low value by default. However, they can
be changed on the /proc file system (no reboot needed). For example, to allow one 64GB:

Terminal
$ su
echo 68719476736 >/proc/sys/kernel/shmall
echo 68719476736 >/proc/sys/kernel/shmmax
_

Terminal

A user can add these commands into a script that is executed at boot time. Alternatively, a user can use the sysctl utility, if
available, to control these parameters. The following lines can be added to a file called /etc/sysctl.conf:

/etc/sysctl.conf
. . .
kernel.shmall = 68719476736
kernel.shmmax = 68719476736
. . .

/etc/sysctl.conf

This file is usually processed at boot time, but sysctl can be called from the command line as well.

Terminal
$ su
sysctl -w kernel.shmall=68719476736
sysctl -w kernel.shmmax=68719476736
_

Terminal

The same strategy can be applied to the default semaphore limits (semmni, semmsl and semmns).

Consider configuring BMDFM with POSIX-semaphores, which scale and perform better than SVR4-semaphores. The
number of POSIX-semaphores is not limited. POSIX-semaphores may have greater values than SVR4-semaphores (BMDFM
resources are limited by the maximal semaphore value).

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 5 of 38 =

5. How do you find out whether the OS is able to provide enough semaphores for BMDFM?

If the OS kernel is configured with too few semaphore resources, BMDFM will not start at all, giving an error message
indicating insufficient semaphore resources. Most critical consumers of the semaphore resources are OQ (Operation Queue)
and DB (Data Buffer), depending on their sizes. The BMDFM boot logs show the number of semaphores in
“<obtained>/<required>” format. Even if the log is scrolled out of the screen, all records can be found in the BMDFM server
log file:

BMDFMsrv.log (successful sema4 record)
[OSInfo]: Current UNIX SVR4 IPC limits:
[OSInfo]: sem: semaphore constants are not available.
[OSInfo]: shm: shared memory constants are not available.
[OSInfo]: Current POSIX SEMA4 limits:
[OSInfo]: sem: semaphore constants are not available.
[SysMsg]: Organizing an abstract DFM UNIT STRUCTURE in the SHMEM_POOL:
[SysMsg]: Initializing CPU PROC state array...
[SysMsg]: Organizing DFM IORBPs...
[SysMsg]: Collecting system semaphores for the OQ and DB...
[SysMsg]: SemOQ=2000/2000, SemDBAreas=28000/28000.
[SysMsg]: Organizing DFM OQ...
[SysMsg]: Organizing DFM DB...

Fragment of BMDFMsrv.log file related to boot logs

BMDFM can also function even with fewer semaphores than required. However, performance degradation can be observed
in this case because all available semaphores are distributed along OQ and DB with certain interleaves. It is worth paying
attention to the following possible warning message in the logs:

BMDFMsrv.log (not very successful sema4 record)
[OSInfo]: Current UNIX SVR4 IPC limits:
[OSInfo]: sem: semaphore constants are not available.
[OSInfo]: shm: shared memory constants are not available.
[OSInfo]: Current POSIX SEMA4 limits:
[OSInfo]: sem: semaphore constants are not available.
[SysMsg]: Organizing an abstract DFM UNIT STRUCTURE in the SHMEM_POOL:
[SysMsg]: Initializing CPU PROC state array...
[SysMsg]: Organizing DFM IORBPs...
[SysMsg]: Collecting system semaphores for the OQ and DB...
[SysMsg]: WARNING!!! Poor resource of the system semaphores.
[SysMsg]: SemOQ=412/3000, SemDBAreas=5507/40000.
[SysMsg]: Organizing DFM OQ...
[SysMsg]: Organizing DFM DB...

Fragment of BMDFMsrv.log file related to boot logs

It is also worth remembering the known fact that the semaphore resources (like all other IPC resources) can remain
occupied in the OS kernel. Though BMDFM always cleans up its IPC resources correctly, it makes sense to check IPC
resources after an unintentional crash situation. The standard ipcs and ipcrm utilities can be used for this purpose. Besides,
BMDFM has its own utility called freeIPC. This utility relies on the freeIPC.inf file with IPC resource descriptors used and
recorded by the BMDFM Server.

Here is a hint on how to create a Purge_BMDFM.sh shell script able to purge the OS correctly from a single instance of
BMDFM:

Purge_BMDFM.sh
#!/bin/sh

export BM_DFM_CONNECTION_FILE_path="/tmp/.BMDFMsrv";
export BM_DFM_CONNECTION_NPIP_path="/tmp/.BMDFMsrv_npipe";
export BM_DFM_EMERGENCY_IPC_FILE_path="./freeIPC.inf";

killall -9 BMDFMsrv BMDFMldr BMDFMtrc PROCstat CPUPROC OQPROC IORBPROC 2>/dev/null

rm –f $BM_DFM_CONNECTION_FILE_path $BM_DFM_CONNECTION_NPIP_path 2>/dev/null

freeIPC

Purge_BMDFM.sh shell script

Consider configuring BMDFM with POSIX-semaphores, which scale and perform better than SVR4-semaphores. The
number of POSIX-semaphores is not limited. POSIX-semaphores may have greater values than SVR4-semaphores (BMDFM
resources are limited by the maximal semaphore value).

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 6 of 38 =

6. How do you start the BMDFM Server detached from a terminal and control it later?

A user can start BMDFMsrv from the command line with --daemonize option. Later on, the started instance can be
controlled through the BMDFM external named pipe. A second terminal can be used for dynamic logging. Such an open
architectural approach even allows a user to write a kind of her/his own BMDFM Remote Console:

Terminal 0 (bash)
$ export BMDFM_LOG_FILENAME=BMDFMsrv.log
$ export BMDFM_ERR_FILENAME=BMDFMsrv.err
$ export BM_DFM_CONNECTION_NPIP_path=/tmp/.BMDFMsrv_npipe
$ BMDFMsrv –-daemonize --logfile $BMDFM_LOG_FILENAME 2>$BMDFM_ERR_FILENAME &
$ echo command >$BM_DFM_CONNECTION_NPIP_path
$ echo command down down >$BM_DFM_CONNECTION_NPIP_path
$ _

Terminal 1 (csh)
$ setenv BMDFM_LOG_FILENAME BMDFMsrv.log
$ tail –f $BMDFM_LOG_FILENAME
[Vers]: Binary Modular Data-Flow Machine (BM_DFM) Release History
[Vers]: and Codenames:
[Vers]: Years | Versions | BM_DFM Codename | Release
[Vers]: -----------+-------------+-----------------------+------------
[Vers]: 1996-1997 | 0.0.1-1.9.9 | "Bare Metal" DFM | Official
[Vers]: 1998-1999 | 2.0.0-2.9.9 | "Big Monster" DFM | Unofficial
[Vers]: 2000-2001 | 3.0.0-3.9.9 | "Beast Master" DFM | Unofficial
[Vers]: 2002-2003 | 4.0.0-4.9.9 | "Behemoth Mighty" DFM | Official
[Vers]: 2004-2015 | 5.0.0-5.9.9 | "Broken Mind" DFM | Official
[Vers]: VERSION_BMDFM_SYS_=`Sancho M. BMDFMSys V5.9.9.' # The BM_DFM Server.
[Vers]: VERSION_TERMCAP___=`Sancho M. TermCap v.1.2.0.' # Term capabilities.
[Vers]: VERSION_FSTLISP___=`Sancho M. FstLisp v.2.9.6.' # FastLisp RTEngine.
[Vers]: VERSION_CFLPUDF___=`Sancho M. CFLPUDF v.1.0.0.' # FastLSP UDFs in C.
[Vers]: VERSION_STRGLIB___=`Sancho M. StrgLib v.2.2.5.' # FstString library.
[Vers]: VERSION_MEMPOOL___=`Sancho M. MemPool v.2.8.8.' # ShMem Pool driver.
[TermCap]: ~~~~~~~~~~~~~~~~~~~~~ Server is running on TERM=ansi.sys (80x25).
[SysMsg]: Overall machinery init for the virtual out-of-order general purpos
e processing was completed at systime Fri Nov 13 18:26:04 2015.
[SysMsg]: Going simultaneous jobs running all the threads in parallel...
[DFMSrv]: All resources were unhooked and invoked successfully!
[SysMsg]: The complete "Broken Mind" Data-Flow Machine Server has been fully
 started.
[SysMsg]: The entire DFM SMP MIMD architecture is ready for dynamic scheduli
ng now.
[Legacy_MainFrame_Initial_Greeting_Message]: GOOD EVENING.
[SysMsg]: A message routed out of the NPIPE at systime Fri Nov 13 18:26:13 2
015.
npipe[COMMAND]: [MSG#0]

Console input:
[SysMsg]: ========== System time is Fri Nov 13 18:26:13 2015. ==========
[Err]: *** Boom! Invalid command!
[Msg]: Type `help' or `?' to see the list of possible commands!
[Msg]: The commands will also be accepted from the external named pipe:
[Msg]: `/tmp/.BMDFMsrv_npipe' in "COMMAND <command>\n" format.
[SysMsg]: A message routed out of the NPIPE at systime Fri Nov 13 18:26:22 2
015.
npipe[COMMAND]: down down [MSG#1]

Console input: down down
[SysMsg]: ========== System time is Fri Nov 13 18:26:22 2015. ==========
[SysMsg]: Now, the BM_DFM Server is urgently going down...
[SysMsg]: Destroying the external connection file...
[SysMsg]: Destroying the ExtTask(Trace) nFIFO pipe...
[SysMsg]: Sending SIGINT to ExtTasks in TCZ...
[SysMsg]: Sending SIGTERM to ExtTasks in TCZ...
[SysMsg]: Sending SIGKILL to ExtTasks in TCZ...
[SysMsg]: Sending SIGKILL to ExtTraces in TPA...
[SysMsg]: Sending SIGKILL to the PROCstat...
[SysMsg]: Sending SIGKILL to the CPU PROCs...
[SysMsg]: Sending SIGKILL to the OQ PROCs...
[SysMsg]: Sending SIGKILL to the IORBP PROCs...
[SysMsg]: Invoking taskjob_end_callback()...
[SysMsg]: Deinitializing BM_DFM...
[DFMSrv]: Release semaphores done.
[DFMSrv]: Close msg PROC pipe done.
[MemPool]: The shared memory pool deinit done.
[SysMsg]: Destroying the freeIPC EMERGENCY CASE file...
[SysMsg]: SHUTDOWN completed at systime Fri Nov 13 18:26:23 2015.
[Legacy_MainFrame_Final_Message]: GOOD BYE.
[SysMsg]: Closing the logs `./BMDFMsrv.log'...
*** Logfile is closed at systime Fri Nov 13 18:26:23 2015 ***
^C
$ _

Terminal 0 and Terminal 1

Obviously, the best practice would be to source all BMDFM environment variables in a working shell and to create a script
for the BMDFM Server console commands (one script for all commands or separate scripts for each command) as shown in the
examples below:

BMDFMcmd.sh
#!/bin/sh

echo command $* >$BM_DFM_CONNECTION_NPIP_path;
tail –200 $BMDFM_LOG_FILENAME

downdown.sh
#!/bin/sh

echo command down down >$BM_DFM_CONNECTION_NPIP_path;
tail –100 $BMDFM_LOG_FILENAME

BMDFMcmd.sh and downdown.sh shell scripts

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 7 of 38 =

7. How do you start many instances of BMDFM on the same machine?

By default, it is not possible to start many instances of BMDFM on the same machine because the BMDFM Server checks
for existence and creates both the /tmp/.BMDFMsrv connection file and the /tmp/.BMDFMsrv_npipe connection named pipe
in the /tmp directory. However, those default names (as well as other default names) can be redefined via the corresponding
environment variables. As an example, the following BMDFMrun0.sh shell script can start an additional unique local
BMDFM instance:

BMDFMrun0.sh
#!/bin/sh

export BM_DFM_CFGPROFILE_path=”./BMDFMsrv0.cfg”;
export BMDFM_LOG_FILENAME=”./BMDFMsrv0.log”;
export BMDFM_ERR_FILENAME=”./BMDFMsrv0.err”;
export BM_DFM_CONNECTION_FILE_path=”./.BMDFMsrv0”;
export BM_DFM_CONNECTION_NPIP_path=”./.BMDFMsrv0_npipe”;
export BM_DFM_EMERGENCY_IPC_FILE_path=”./freeIPC0.inf”;

BMDFMsrv --logfile $BMDFM_LOG_FILENAME 2>$BMDFM_ERR_FILENAME

BMDFMrun0.sh startup shell script

It is also not a bad idea to source the mentioned variables in a user shell environment to be reused by BMDFMldr,
BMDFMtrc and freeIPC if necessary.

One more important thing to remember here is the number of used SVR4 semaphores. In other words, it is important to
prevent a situation where one running BMDFM instance holds all available SVR4 semaphores in the system, blocking startup
of other BMDFM instances. The OQ_DB_SEM_LIMIT configuration parameter of the BMDFM configuration profile serves
exactly this purpose. The owner of a BMDFM instance is responsible to set this value correctly, based upon the number of all
available SVR4 semaphores in the system and the number of BMDFM instances planned to be run simultaneously. All owners,
for example, can have a kind of settlement agreement regarding the allowed SVR4 semaphore quota per instance.

Consider configuring BMDFM with POSIX-semaphores, which scale and perform better than SVR4-semaphores. The

number of POSIX-semaphores is not limited. POSIX-semaphores may have greater values than SVR4-semaphores (BMDFM
resources are limited by the maximal semaphore value).

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 8 of 38 =

8. How do you get a list of recognizable parameters for the BMDFM configuration profile?

The dfmkernel and dfmserver commands of the BMDFM Server console display all available configuration parameters
merged with their current values by “=“ sign:

Output of dfmkernel

Console input: dfmkernel
[SysMsg]: ========== System time is Fri Nov 13 18:36:43 2015. ==========
[DFMKrnl]: Global parameters of the BM_DFM Kernel:
[DFMKrnl]: Operation Queue (OQ) size: Q_OQ=1000Entities.
[DFMKrnl]: Data Buffer (DB) size: Q_DB=500Entities.
[DFMKrnl]: I/O Ring Buffer Port (IORBP) size: Q_IORBP=100Entities.
[DFMKrnl]: Number of IORBPs: N_IORBP=10.
[DFMKrnl]: Number of main processes (CPU PROCs): N_CPUPROC=8.
[DFMKrnl]: Number of OQ PROCs: N_OQPROC=8.
[DFMKrnl]: Number of IORBP PROCs: N_IORBPPROC=8.
[DFMKrnl]: Block size used in OQ search algorithm is 62.
[DFMKrnl]: Size of caches in speculative prediction unit is 64000Bytes.
[DFMKrnl]: Associative hierarchy of speculative tagging max. 532000Bytes.
[DFMKrnl]: mapcar() uses decompiler: BM_DFM_MAPCAR_WITH_DECOMPILER is set to 1.
[DFMKrnl]: Compiler uses justified types: BM_DFM_COMPILE_JUSTIFIED_TYPES is set to 1.
[DFMKrnl]: Compiler generates debug info: BM_DFM_COMPILE_WITH_DEBUGINFO is set to 1.
[DFMKrnl]: Display stall warnings: STALL_WARNINGS=NO.
[DFMKrnl]: Hard array synchronization: HARD_ARRAY_SYNCHRO=NO.
[DFMKrnl]: Async heap descriptor and boundary checks: AHEAP_ACCESS_CHECK=YES.
[DFMKrnl]: I/O synchronization of external task: EXT_IN_OUT_SYNCHRO=YES.
[DFMKrnl]: Compensate ShMem relaxed consistency: RELAXED_CNSTN_SM_MODEL=YES.
[DFMKrnl]: Use SVR4 or POSIX semaphores: POSIX_SEMA4_SYNC=RW+COUNT.
[DFMKrnl]: SVR4 sema4 is replaced with POSIX sema4 where possible.

Output of dfmserver

Console input: dfmserver
[SysMsg]: ========== System time is Fri Nov 13 18:36:53 2015. ==========
[DFMSrv]: PIDs of the BM_DFM processes:
[DFMSrv]: N# | CPUPROCs | OQPROCs | IORBPPROCs | PROCstat
[DFMSrv]: ------------+------------+------------+------------+------------
[DFMSrv]: 0 | 14926 | 14934 | 14942 | 14925
[DFMSrv]: 1 | 14927 | 14935 | 14943 |
[DFMSrv]: 2 | 14928 | 14936 | 14944 |
[DFMSrv]: 3 | 14929 | 14937 | 14945 |
[DFMSrv]: 4 | 14930 | 14938 | 14946 |
[DFMSrv]: 5 | 14931 | 14939 | 14947 |
[DFMSrv]: 6 | 14932 | 14940 | 14948 |
[DFMSrv]: 7 | 14933 | 14941 | 14949 |
[DFMSrv]: CPU PROC is multithreaded: CPUPROC_MTHREAD=NO.
[DFMSrv]: OQ PROC is multithreaded: OQPROC_MTHREAD=NO.
[DFMSrv]: IORBP PROC is multithreaded: IORBPPROC_MTHREAD=NO.
[DFMSrv]: BMDFMldr is multithreaded: BMDFMLDR_MTHREAD=NO.
[DFMSrv]: Thread-Local Storage (TLS) verification: MTHREAD_TLS_CHECK=NO.
[DFMSrv]: Allow CPU PROC Address Space Layout Randomization (ASLR): ALLOW_CPUPROC_ASLR=NO.
[DFMSrv]: Global parameters of the BM_DFM Server:
[DFMSrv]: AGGRESSIVE compilation: SPECULATIVE_RISC_ARCH = 1(yes).
[DFMSrv]: Own system SHM_SEMAPHORE: REENTERANT_SHMEM_POOL = 1(yes).
[DFMSrv]: PID of the BM_DFM Server is 8786.
[DFMSrv]: Number of SVR4 semaphores per group is 250.
[DFMSrv]: Maximal SVR4/POSIX semaphore value is 2147483647.
[DFMSrv]: ShMemPool mount address (0=auto): SHMEM_POOL_MNTADDR=999999999.
[DFMSrv]: ShMemPool size: SHMEM_POOL_SIZE=500000000Bytes.
[DFMSrv]: Number of ShMemPool banks: SHMEM_POOL_BANKS=10Banks.
[DFMSrv]: ShMemPool and sema4 permissions are: SHMEM_POOL_PERMS=432.
[DFMSrv]: (0660=="rw-rw----").
[DFMSrv]: Array block size: ARRAYBLOCK_SIZE=64Entities.
[DFMSrv]: OQ function argument count: OQ_FUNC_ARG_COUNT=32Entities.
[DFMSrv]: Time to scan DFM for statistic: T_STATISTIC=1Second.
[DFMSrv]: Max number of OQ&&DB semaphores (0=unlim): OQ_DB_SEM_LIMIT=0.
[DFMSrv]: Number of Trace Ports (TPs): N_TRACEPORT=5.
[DFMSrv]: Heartbeats for the CPU, OQ && IORBP PROCs: PROC_HEARTBEATS=YES.
[DFMSrv]: Console output is adjusted for UTF8: CONSOLE_OUT_UTF8=NO.
[DFMSrv]: Detection of dataflow stall hazards: DFSTLHAZARD_DETECT=YES.
[DFMSrv]: Async-Signal-Safety prior POSIX.1-2013: ASYNCSIGNAL_SAFETY=NO.
[DFMSrv]: Allow dropping nonproductive instructions: ALLOW_DROP_NONPROD=NO.
[DFMSrv]: Server console logs are enabled.
[DFMSrv]: Logs are in `./BMDFMsrv.log'.
[DFMSrv]: Keeping 10 old logfiles (10000000Bytes each).
[DFMSrv]: Registration logs for the CPU && IORBP PROCs: PROC_CPU_LOGS=NO.
[DFMSrv]: Runtime ErrCode for `ShMemPool space exhausted' is 252.
[DFMSrv]: Runtime ErrCode for `Dataflow stall hazard' is 253.
[DFMSrv]: Signal to reset/get used CPU time in child PROCs is 10 (irq).
[DFMSrv]: Signal to unhook child PROCs out of a semaphore is 12 (irq).
[DFMSrv]: Msg PROC unnamed pipe R/W IDs: rID=6, wID=7.
[DFMSrv]: External task named pipe `/tmp/.BMDFMsrv_npipe' R/W ID=8.

Output of the dfmkernel and dfmserver commands on the BMDFM Server console

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 9 of 38 =

9. Where can it be necessary to change the mounting address of the shared memory segment?

The shared memory segment is created, mounted and initialized by the BMDFM Server. Later on, all other BMDFM
processes mount the shared memory segment to their own virtual address spaces. By default, the mounting address is chosen by
the BMDFM Server and the OS automatically. This mounting address is the same (and it must be the same) for all other
processes. The BMDFM Server is able to assign the mounting address automatically because the size of its code segment is
practically the same as the code segment sizes of other processes and, additionally, a dynamic linker links practically against
the same runtime libraries so that they do not overlap the virtual address space of the shared memory segment. The standard ldd
utility is useful to get an idea of which runtime libraries are in use and which mounting address to choose manually if necessary:

Terminal
$ ldd BMDFMsrv
 linux-vdso.so.1 => (0x00007fff55dff000)
 libm.so.6 => /lib64/libm.so.6 (0x00000034a8600000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ ldd BMDFMldr
 linux-vdso.so.1 => (0x00007fff0f3ff000)
 libm.so.6 => /lib64/libm.so.6 (0x00000034a8600000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ ldd BMDFMtrc
 linux-vdso.so.1 => (0x00007fff4c078000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ ldd PROCstat
 linux-vdso.so.1 => (0x00007fff11983000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ ldd CPUPROC
 linux-vdso.so.1 => (0x00007fff947b3000)
 libm.so.6 => /lib64/libm.so.6 (0x00000034a8600000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ ldd OQPROC
 linux-vdso.so.1 => (0x00007fffe51ff000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ ldd IORBPROC
 linux-vdso.so.1 => (0x00007fff78bff000)
 libpthread.so.0 => /lib64/libpthread.so.0 (0x00000034a9200000)
 libc.so.6 => /lib64/libc.so.6 (0x00000034a8a00000)
 /lib64/ld-linux-x86-64.so.2 (0x00000034a8200000)
$ _

Terminal

Even when a user extends the VM with his own implementations written in C/C++, those implementations are still linked
against BMDFMsrv, BMDFMldr and CPUPROC, maintaining the equality of code segment sizes and the same set of runtime
libraries.

However, the following exceptional cases exist where a manually chosen mounting address is required:

• A user prefers to link some of the BMDFM processes statically and some of them dynamically.
• A conditional compilation is applied that results in linking of different code sizes against the BMDFM processes (and

possibly a different set of runtime libraries).

The SHMEM_POOL_MNTADDR configuration parameter of the BMDFM configuration profile lets you set the mounting
address of the shared memory segment manually as needed.

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 10 of 38 =

10. Is there any difference between a memory descriptor and a memory address?

Memory descriptors are used only for backward compatibility with previous versions of BMDFM. The current
implementation of BMDFM always returns memory address in case either of a memory descriptor or a memory address. This
will also be supported in future versions of BMDFM. The two following VM code fragments are equivalent; the second one is
recommended and preferable:

VM code fragment (obsolete)
(setq mem_descr (asyncheap_create size))
(setq mem_addr (asyncheap_getaddress mem_descr))

VM code fragment (recommended)
(setq mem_addr (asyncheap_create size))

VM code fragments

The returned memory addresses are always aligned to the size of a long integer (4 bytes in case of 32-bit BMDFM and 8
bytes in case of 64-bit BMDFM). All standard built-in asyncheap-functions work correctly with such an alignment, they work
even where float-alignment is required and on all RISC-processors (note: x86, x86-64 and IA-64 are able to tolerate misaligned
data in contrast to most RISC-processors). In most use cases, a user writes his own functions in C/C++ that are consumers of
the returned memory addresses. Normally, it makes sense to align the addresses locally within every user-defined function,
keeping the original addresses for asyncheap_delete function. The following is a recommended example for address alignment:

Pattern for the address alignment (pseudo-code)
addr -> block allocated with size alignment_size*(NumberOfEntities+1)
addr = addr + (alignment_size - abs(addr % alignment_size))

VM code
(defun float_size (len (dump_f2s 0.)))

(defun udf (progn
 (setq addr (+ 0 $1))

 # alignment
 (setq addr (+ addr (- (float_size) (iabs (% addr (float_size))))))

 # . . .

))

(setq addr (asyncheap_create (* (float_size) (++ NumberOfEntities))))
(udf addr)
(asyncheap_delete addr)

UDF written in C
#define ULO unsigned long int
#define SLO signed long int
#define DFL double

void udf(const ULO *dat_ptr, struct fastlisp_data *ret_dat){
 DFL *float_array;
 ret_ival(dat_ptr,(SLO*)&float_array);

 // alignment
 (ULO)float_array+=(sizeof(DFL)-(ULO)float_array%sizeof(DFL));

 // . . .

 return;
}

Address alignment in VM code or in C code

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 11 of 38 =

11. How does BMDFM handle strings internally?

BMDFM processes strings in the format similar to the Hollerith string representation using COW-policy (Copy-on-Write).
A string itself always stores its length followed by its contents terminated with a number of zeros aligned to the size of long. A
pointer to the string always points to the string contents making it compatible with the standard null-terminated C-strings:

String format Example C code using the BMDFM strings
#define CHR char
#define ULO unsigned long int

Addr Low Addr High
|<------ ------->|
<ULO string_size><string><zero_char><zero_char_alignment_to_ULO_size>
 ^
 |
CHR *string_ptr -'

CHR *str0=NULL,*str1=NULL,*str2=NULL;
get_std_buff(&str0,"To be or not to be");
get_std_buff(&str1,"be");
get_std_buff(&str2,"compute");
upper(&str0,strtran(&str0,str0,str1,str2));
printf("`%s'\n",str0);
free_string(&str0);
free_string(&str1);
free_string(&str2);

BMDFM strings

The implemented set of the string processing functions is basically equal to the same set on the FastLisp level:

BMDFM string library
#define CHR char
#define UCH unsigned char
#define SCH signed char
#define USH unsigned short int
#define SSH signed short int
#define ULO unsigned long int
#define SLO signed long int
#define DFL double

CHR *mk_std_buff(CHR **buff, ULO size);
CHR *mk_std_buff_secure(CHR **buff, ULO size);
CHR *mk_fst_buff(CHR **buff, ULO size);
CHR *mk_fst_buff_secure(CHR **buff, ULO size);
CHR *get_std_buff(CHR **targ, const CHR *buff);
CHR *get_std_buff_secure(CHR **targ, const CHR *buff);
UCH notempty(const CHR *string);
ULO len(const CHR *string);
ULO at(const CHR *pattern, const CHR *among);
ULO rat(const CHR *pattern, const CHR *among);
UCH cmp(const CHR *string1, const CHR *string2);
SCH cmp_s(const CHR *string1, const CHR *string2);
CHR *equ(CHR **targ, const CHR *source);
CHR *equ_secure(CHR **targ, const CHR *source);
CHR *equ_num(CHR **targ, SLO num);
CHR *equ_unum(CHR **targ, ULO num);
CHR *equ_numhex(CHR **targ, ULO num);
CHR *equ_fnum(CHR **targ, DFL fnum);
CHR *cat(CHR **targ, const CHR *source);
CHR *lcat(CHR **targ, const CHR *source);
CHR *space(CHR **targ, ULO pos);
CHR *replicate(CHR **targ, const CHR *source, ULO num);
CHR *left(CHR **targ, const CHR *source, ULO pos);
CHR *leftr(CHR **targ, const CHR *source, ULO posr);
CHR *right(CHR **targ, const CHR *source, ULO pos);
CHR *rightl(CHR **targ, const CHR *source, ULO posl);
CHR *substr(CHR **targ, const CHR *source, ULO from, ULO pos);
CHR *strtran(CHR **targ, const CHR *source, const CHR *pattern, const CHR *subst);
CHR *ltrim(CHR **targ, const CHR *source);
CHR *rtrim(CHR **targ, const CHR *source);
CHR *alltrim(CHR **targ, const CHR *source);
CHR *pack(CHR **targ, const CHR *source);
CHR *head(CHR **targ, const CHR *source);
CHR *tail(CHR **targ, const CHR *source);
CHR *lsp_head(CHR **targ, const CHR *source);
CHR *lsp_tail(CHR **targ, const CHR *source);
CHR *upper(CHR **targ, const CHR *source);
CHR *lower(CHR **targ, const CHR *source);
CHR *upper_utf8(CHR **targ, const CHR *source);
CHR *lower_utf8(CHR **targ, const CHR *source);
UCH is_utf8char(const CHR *utf8char);
CHR *ltrim_utf8(CHR **targ, const CHR *source);
CHR *rtrim_utf8(CHR **targ, const CHR *source);
CHR *alltrim_utf8(CHR **targ, const CHR *source);
CHR *rev(CHR **targ, const CHR *source);
CHR *padl(CHR **targ, const CHR *source, ULO width);
CHR *padr(CHR **targ, const CHR *source, ULO width);
CHR *padc(CHR **targ, const CHR *source, ULO width);
CHR *strraw(CHR **targ, const CHR *source);
CHR *strunraw(CHR **targ, const CHR *source);
CHR *strdump(CHR **targ, const CHR *source);
CHR *string_time(CHR **targ);
CHR *strings_version(CHR **targ);
CHR *sch2str(CHR **targ, SCH num);
CHR *ssh2str(CHR **targ, SSH num);
CHR *slo2str(CHR **targ, SLO num);
CHR *ptr2str(CHR **targ, void *ptr);
CHR *dfl2str(CHR **targ, DFL num);
SCH str2sch(const CHR *string);
SSH str2ssh(const CHR *string);
SLO str2slo(const CHR *string);
void *str2ptr(const CHR *string);
DFL str2dfl(const CHR *string);
ULO crcsum(const CHR *string);
CHR *free_string(CHR **targ);

BMDFM string library

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 12 of 38 =

12. Why use USER_IO?

The direct purpose of BMDFM is fast parallel processing of data. If a specific input/output is required, it can be
implemented as a standalone process providing data to BMDFM and taking processed data from BMDFM through files or
pipes. However, it is not prohibited to implement such a specific input/output within BMDFM itself as user-defined functions
extending the VM. In this case, it is not a big deal to write a couple of C-functions, something like device_open(),
device_read(), device_write() and device_close(). If access to such a device does not require having a process-associated
descriptor with stateful data structures behind it, then there is no problem at all – stateless calls to the device will be
synchronized on the BMDFM dataflow engine, and the CPUPROC processes will cooperatively execute the calls. The problem
appears in a situation where the specific input/output requires a process-associated device descriptor having stateful data
structures behind it, thus, the calls must be executed in the same process address space. Exactly for this purpose, the following
VM functions are always executed by the BMDFMldr process but not CPUPROC processes:

VM functions
(accept <SVal_prompt_message_for_console_or_empty_for_stdin>)
(scan_console <IVal_wait_key_forever_if_1_or_useconds_if_positive>)
(file_create <SVal_file_name>)
(file_open <SVal_file_name>)
(file_write <IVal_file_descriptor> <SVal_string_to_be_written>)
(file_read <IVal_file_descriptor> <IVal_number_of_bytes_to_be_read>)
(file_seek_beg <IVal_file_descriptor> <IVal_offset_in_bytes_from_file_beginning>)
(file_seek_cur <IVal_file_descriptor> <IVal_offset_in_bytes_from_file_current_offset>)
(file_seek_end <IVal_file_descriptor> <IVal_offset_in_bytes_from_file_end>)
(file_close <IVal_file_descriptor>)
(file_remove <SVal_file_name>)
(user_io <IVal_user_defined_integer> <IVal_user_defined_string>)

List of the VM functions executed by BMDFMldr

Hence, the following pattern is recommended to implement the specific input/output that requires a process-associated
device descriptor:

VM code
(setq DEVICE_OPEN (<< 1 20))
(setq DEVICE_READ (<< 2 20))
(setq DEVICE_WRITE (<< 3 20))
(setq DEVICE_CLOSE (<< 4 20))

(setq XML_data (accept “”)) # input XML chunk
(setq descr (ival (user_io DEVICE_OPEN “Specific Device: XML”)))
(user_io (| DEVICE_WRITE descr) XML_data)
(setq XML_data (user_io (| DEVICE_READ descr) “”))
(user_io (| DEVICE_CLOSE descr) “”)
XML_data # output XML chunk

USER_IO callback written in C
#define CHR char
#define SLO signed long int

#define DEVICE_OPEN (SLO)(1<<20)
#define DEVICE_READ (SLO)(2<<20)
#define DEVICE_WRITE (SLO)(3<<20)
#define DEVICE_CLOSE (SLO)(4<<20)

void user_io_callback(SLO usr_id, CHR **usr_buff){
 SLO operation=usr_id&(0xF<<20),descr=usr_id&0xFFFFF;
 switch(operation){
 case DEVICE_OPEN:
 equ_num(usr_buff,device_open(usr_buff)); break;
 case DEVICE_READ:
 get_std_buff(usr_buff,device_read(descr)); break;
 case DEVICE_WRITE:
 equ_num(usr_buff,device_write(descr,usr_buff)); break;
 case DEVICE_CLOSE:
 equ_num(usr_buff,device_close(descr));
 }
 return;
}

Specific input/output implemented via USER_IO

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 13 of 38 =

13. How do you implement termcap via USER_IO?

The following usage model of termcap that is implemented via USER_IO works correctly for both fastlisp and BMDFMldr
when running either VM code or precompiled VM code:

VM code
(user_io 0 "TERMCAP RESET")
(setq term_type (user_io 0 "TERMCAP TERM_TYPE"))
(setq lines_term (ival (user_io 0 "TERMCAP LINES_TERM")))
(setq columns_term (ival (user_io 0 "TERMCAP COLUMNS_TERM")))
(setq clrscr_term (user_io 0 "TERMCAP CLRSCR_TERM"))
(setq reverse_term (user_io 0 "TERMCAP REVERSE_TERM"))
(setq blink_term (user_io 0 "TERMCAP BLINK_TERM"))
(setq bold_term (user_io 0 "TERMCAP BOLD_TERM"))
(setq normal_term (user_io 0 "TERMCAP NORMAL_TERM"))
(setq hidecursor_term (user_io 0 "TERMCAP HIDECURSOR_TERM"))
(setq showcursor_term (user_io 0 "TERMCAP SHOWCURSOR_TERM"))
(setq gotocursor_term (user_io 0 "TERMCAP GOTOCURSOR_TERM"))

Using termcap via USER_IO

Here is an implementation example:

USER_IO callback written in C
#include <fcntl.h>
#include <termcap.h>
#include <termio.h>
/* #include <termios.h> */

static struct tcap_{
 const CHR *TERM_TYPE; /* TERM environment; */
 const ULO LINES_TERM; /* number of lines (li); */
 const ULO COLUMNS_TERM; /* number of columns (co); */
 const CHR *CLRSCR_TERM; /* clr scr, cursor home (cl); */
 const CHR *REVERSE_TERM; /* start reverse mode (mr); */
 const CHR *BLINK_TERM; /* start blinking (mb); */
 const CHR *BOLD_TERM; /* start bold mode (md); */
 const CHR *NORMAL_TERM; /* end modes like mb,md,mr (me); */
 const CHR *HIDECURSOR_TERM; /* cursor invisible (vi); */
 const CHR *SHOWCURSOR_TERM; /* cursor visible (ve); */
 const CHR *GOTOCURSOR_TERM; /* cursor move (cm). */
 CHR *term_type;
 ULO lines_term;
 ULO columns_term;
 CHR *clrscr_term;
 CHR *reverse_term;
 CHR *blink_term;
 CHR *bold_term;
 CHR *normal_term;
 CHR *hidecursor_term;
 CHR *showcursor_term;
 CHR *gotocursor_term;
 UCH tcap_initialized;
} tcap={
 (CHR*)"ansi.sys",(ULO)25,(ULO)80,(CHR*)"\033[m\033[7h\033[2J",
 (CHR*)"\033[7m",(CHR*)"",(CHR*)"\033[1m",(CHR*)"\033[m",(CHR*)"",
 (CHR*)"",(CHR*)"\033[%i%d;%dH",(UCH)0
};

void tcap_deinit(void){
 tcap.tcap_initialized=0;
 return;
}
void tcap_init(void){
 CHR *temp=NULL;
 char *term_data=NULL;
 int tty_term;
 struct winsize ws;
 get_std_buff(&tcap.term_type,tcap.TERM_TYPE);
 tcap.lines_term=tcap.LINES_TERM;
 tcap.columns_term=tcap.COLUMNS_TERM;
 get_std_buff(&tcap.clrscr_term,tcap.CLRSCR_TERM);
 get_std_buff(&tcap.reverse_term,tcap.REVERSE_TERM);
 get_std_buff(&tcap.blink_term,tcap.BLINK_TERM);
 get_std_buff(&tcap.bold_term,tcap.BOLD_TERM);
 get_std_buff(&tcap.normal_term,tcap.NORMAL_TERM);
 get_std_buff(&tcap.hidecursor_term,tcap.HIDECURSOR_TERM);
 get_std_buff(&tcap.showcursor_term,tcap.SHOWCURSOR_TERM);
 get_std_buff(&tcap.gotocursor_term,tcap.GOTOCURSOR_TERM);
 get_std_buff(&temp,getenv("TERM"));
 if(len(temp))
 equ(&tcap.term_type,temp);
 if(0<(signed)tgetent(NULL,tcap.term_type)){
 if((tty_term=open("/dev/tty",0))<0){
 tty_term=2;
 ioctl(tty_term,TIOCGWINSZ,&ws);
 }
 else{
 ioctl(tty_term,TIOCGWINSZ,&ws);
 close(tty_term);
 }
 if((tcap.lines_term=(ULO)ws.ws_row)<=0)
 tcap.lines_term=tcap.LINES_TERM;
 if((tcap.columns_term=(ULO)ws.ws_col)<=0)
 tcap.columns_term=tcap.COLUMNS_TERM;
 if(tgetstr((char*)"cl",&term_data)!=NULL)
 get_std_buff(&tcap.clrscr_term,term_data);
 if(tgetstr((char*)"mr",&term_data)!=NULL)
 get_std_buff(&tcap.reverse_term,term_data);
 if(tgetstr((char*)"mb",&term_data)!=NULL)
 get_std_buff(&tcap.blink_term,term_data);
 if(tgetstr((char*)"md",&term_data)!=NULL)
 get_std_buff(&tcap.bold_term,term_data);

 if(tgetstr((char*)"me",&term_data)!=NULL)
 get_std_buff(&tcap.normal_term,term_data);
 if(tgetstr((char*)"vi",&term_data)!=NULL)
 get_std_buff(&tcap.hidecursor_term,term_data);
 if(tgetstr((char*)"ve",&term_data)!=NULL)
 get_std_buff(&tcap.showcursor_term,term_data);
 if(tgetstr((char*)"cm",&term_data)!=NULL)
 get_std_buff(&tcap.gotocursor_term,term_data);
 free((void*)term_data);
 }
 free_string(&temp);
 tcap.tcap_initialized=1;
 return;
}

void user_io_callback(SLO usr_id, CHR **usr_buff){
 CHR *temp=NULL,*temp1=NULL,*temp2=NULL;
 equ(&temp,*usr_buff);
 if(cmp(head(&temp2,temp),get_std_buff(&temp1,"TERMCAP"))){
 tail(&temp1,temp);
 while(1){
 if(cmp(temp1,get_std_buff(&temp,"RESET"))){
 tcap_deinit();
 space(usr_buff,0);
 break;
 }
 if(!tcap.tcap_initialized)
 tcap_init();
 if(cmp(temp1,get_std_buff(&temp,"TERM_TYPE"))){
 equ(usr_buff,tcap.term_type);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"LINES_TERM"))){
 equ_num(usr_buff,(SLO)tcap.lines_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"COLUMNS_TERM"))){
 equ_num(usr_buff,(SLO)tcap.columns_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"CLRSCR_TERM"))){
 equ(usr_buff,tcap.clrscr_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"REVERSE_TERM"))){
 equ(usr_buff,tcap.reverse_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"BLINK_TERM"))){
 equ(usr_buff,tcap.blink_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"BOLD_TERM"))){
 equ(usr_buff,tcap.bold_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"NORMAL_TERM"))){
 equ(usr_buff,tcap.normal_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"HIDECURSOR_TERM"))){
 equ(usr_buff,tcap.hidecursor_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"SHOWCURSOR_TERM"))){
 equ(usr_buff,tcap.showcursor_term);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"GOTOCURSOR_TERM"))){
 equ(usr_buff,tcap.gotocursor_term);
 break;
 }
 break;
 }
 }
 free_string(&temp);
 free_string(&temp1);
 free_string(&temp2);
 return;
}

Implementation of termcap via USER_IO

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 14 of 38 =

14. How do you evaluate the VM language expressions from C/C++ code?

The best way is to call mapcar function giving the artificially generated byte code preamble to its input. Mapcar accepts
both VM language source and VM byte code. So, the idea of a byte code caching can be used to avoid redundant recompilation
of the frequently evaluated expressions. The following approach will work correctly for both single-threaded and multithreaded
BMDFM engines:

Evaluation of the VM language expressions from C/C++ code
#define CHR char
#define ULO unsigned long int
#define SLO signed long int

extern void func__mapcar(const ULO*, struct fastlisp_data*);
extern void func__dummy_s(const ULO*, struct fastlisp_data*);

#ifndef POSIXMTHREAD_NOT_SUPPORTED
__thread
#endif
struct{
 CHR *flp_expr;
 CHR *bytecode;
} flpeval_cache={NULL,NULL};
CHR flp_eval(CHR *flp_expr, struct fastlisp_data *ret_dat){
 CHR success=0,*flp_fnc=NULL,*temp=NULL;
 struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL,{NULL}};
 get_std_buff(&flp_fnc,flp_expr);
 if(notempty(flp_fnc)&&cmp(flp_fnc,flpeval_cache.flp_expr))
 equ(&flp_fnc,flpeval_cache.bytecode);
 lcat(&flp_fnc,slo2str(&temp,len(flp_fnc)));
 lcat(&flp_fnc,ptr2str(&temp,(void*)&func__dummy_s));
 lcat(&flp_fnc,temp);
 *((CHR**)flp_fnc)=flp_fnc+sizeof(ULO);
 func__mapcar((ULO*)flp_fnc,&res);
 if((res.array.mix+2)->value.ival||(res.array.mix+4)->value.ival)
 copy_flp_data(ret_dat,&res,0);
 else{
 copy_flp_data(ret_dat,res.array.mix+1,0);
 get_std_buff(&flpeval_cache.flp_expr,flp_expr);
 equ(&flpeval_cache.bytecode,(res.array.mix+8)->svalue);
 success=1;
 }
 free_flp_data(&res);
 free_string(&flp_fnc);
 free_string(&temp);
 return success;
}

/* Pattern example for a caller: */
SLO addr;
struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL,{NULL}};
if(flp_eval("(asyncheap_create 1024)",&res))
 addr=res.value.ival;
free_flp_data(&res);

Evaluation of the VM language expressions from C/C++ code

Here is an implementation of termcap via USER_IO that calls VM language from C code:

USER_IO callback written in C that calls VM language
/* The BMDFMldr module is capable of invoking/evaluating VM language
 expressions from C/C++ code (1-Capable;0-Unable).*/
UCH BMDFMldr_capable_call_VMcode_from_C=1;

void user_io_callback(SLO usr_id, CHR **usr_buff){
 CHR *temp=NULL,*temp1=NULL,*temp2=NULL;
 struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL,{NULL}};
 equ(&temp,*usr_buff);
 if(cmp(head(&temp2,temp),get_std_buff(&temp1,"TERMCAP"))){
 tail(&temp1,temp);
 while(1){
 if(cmp(temp1,get_std_buff(&temp,"TERM_TYPE"))
 ||cmp(temp1,get_std_buff(&temp,"CLRSCR_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"REVERSE_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"BLINK_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"BOLD_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"NORMAL_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"HIDECURSOR_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"SHOWCURSOR_TERM"))){
 lcat(&temp,sch2str(&temp2,'('));
 cat(&temp,sch2str(&temp2,')'));
 flp_eval(temp,&res);
 equ(usr_buff,res.svalue);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"LINES_TERM"))
 ||cmp(temp1,get_std_buff(&temp,"COLUMNS_TERM"))){
 lcat(&temp,sch2str(&temp2,'('));
 cat(&temp,sch2str(&temp2,')'));
 flp_eval(temp,&res);
 equ_num(usr_buff,res.value.ival);
 break;
 }

 if(cmp(temp1,get_std_buff(&temp,"GOTOCURSOR_TERM"))){
 flp_eval("(gotocursor_term -1 -1)",&res);
 equ(usr_buff,res.svalue);
 break;
 }
 if(cmp(temp1,get_std_buff(&temp,"RESET"))){
 flp_eval("(reinit_terminal \"\")",&res);
 equ(usr_buff,res.svalue);
 }
 break;
 }
 }
 free_string(&temp);
 free_string(&temp1);
 free_string(&temp2);
 free_flp_data(&res);
 return;
}

VM code
(user_io 0 "TERMCAP RESET")
(setq term_type (user_io 0 "TERMCAP TERM_TYPE"))
(setq lines_term (ival (user_io 0 "TERMCAP LINES_TERM")))
(setq columns_term (ival (user_io 0 "TERMCAP COLUMNS_TERM")))
(setq clrscr_term (user_io 0 "TERMCAP CLRSCR_TERM"))
(setq reverse_term (user_io 0 "TERMCAP REVERSE_TERM"))
(setq blink_term (user_io 0 "TERMCAP BLINK_TERM"))
(setq bold_term (user_io 0 "TERMCAP BOLD_TERM"))
(setq normal_term (user_io 0 "TERMCAP NORMAL_TERM"))
(setq hidecursor_term (user_io 0 "TERMCAP HIDECURSOR_TERM"))
(setq showcursor_term (user_io 0 "TERMCAP SHOWCURSOR_TERM"))
(setq gotocursor_term (user_io 0 "TERMCAP GOTOCURSOR_TERM"))

Implementation of termcap via USER_IO that calls VM language from C code

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 15 of 38 =

15. How do you allocate/free shared memory from C/C++ code?

The standard calls to malloc() and free() will not target the Shared Memory Pool. One of the possible solutions is to
evaluate the "(asyncheap_create ...)" and "(asyncheap_delete ...)" fastlisp expressions from C/C++ code. However, the direct
calls to the asyncheap_create() and asyncheap_delete() implementations will run faster. The following approach will work
correctly for both single-threaded and multithreaded BMDFM engines. The shared memory will be automatically freed after an
external task is detached from the BMDFM server:

Shared memory operations from C/C++ code
/* Pure C */
#define CHR char
#define ULO unsigned long int
#define SLO signed long int

#ifdef _TO_BE_LINKED_AGAINST_CPUPROC_
 #define FLP_MALLOC par_func__asyncheap_create_j
 #define FLP_FREE par_func__asyncheap_delete_j
#else
 #define FLP_MALLOC func__asyncheap_create_j
 #define FLP_FREE func__asyncheap_delete_j
#endif /* or do the module check at runtime
 using am_I_in_the_CPUPROC_module() */
extern void FLP_MALLOC(const ULO*, struct fastlisp_data*);
extern void FLP_FREE(const ULO*, struct fastlisp_data*);
extern void func__dummy_i(const ULO*, struct fastlisp_data*);

void *flp_malloc(SLO bytes){
 CHR *flp_fnc=NULL,*temp=NULL;
 SLO addr;
 struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL,{NULL}};
 slo2str(&flp_fnc,bytes);
 lcat(&flp_fnc,ptr2str(&temp,(void*)&func__dummy_i));
 lcat(&flp_fnc,temp);
 *((CHR**)flp_fnc)=flp_fnc+sizeof(ULO);
 FLP_MALLOC((ULO*)flp_fnc,&res);
 addr=res.value.ival;
 free_flp_data(&res);
 free_string(&flp_fnc);
 free_string(&temp);
 return (void*)addr;
}
void flp_free(SLO addr){
 CHR *flp_fnc=NULL,*temp=NULL;
 struct fastlisp_data res={1,1,0,0,{0},NULL,1,NULL,{NULL}};
 slo2str(&flp_fnc,addr);
 lcat(&flp_fnc,ptr2str(&temp,(void*)&func__dummy_i));
 lcat(&flp_fnc,temp);
 *((CHR**)flp_fnc)=flp_fnc+sizeof(ULO);
 FLP_FREE((ULO*)flp_fnc,&res);
 free_flp_data(&res);
 free_string(&flp_fnc);
 free_string(&temp);
 return;
}

// Pure C++
#define SLO signed long int

class foo{ // Use pattern for the class:
 // foo *foo0=new foo,*foo1=new foo[2];
 // delete foo0;
 // delete[] foo1;
public:
 foo();
 ~foo();
 void *operator new(size_t size) throw (const char*);
 void *operator new[](size_t size) throw (const char*);
 void operator delete(void *p);
 void operator delete[](void *p);
};

foo::foo(){
}

foo::~foo(){
}

void *foo::operator new(size_t size) throw (const char*){
 void *ptr=flp_malloc((SLO)size);
 if(ptr==NULL)
 throw "Allocation failure.";
 return ptr;
}

void *foo::operator new[](size_t size) throw (const char*){
 void *ptr=flp_malloc((SLO)size);
 if(ptr==NULL)
 throw "Allocation failure.";
 return ptr;
}

void foo::operator delete(void *ptr){
 flp_free((SLO)ptr);
 return;
}

void foo::operator delete[](void *ptr){
 flp_free((SLO)ptr);
 return;
}

Shared memory access from C/C++ code

The similar strategy can be applied to other asyncheap functions. Use the standard nm utility to check the correct names of
the functions you would like to link against:

Terminal
$ nm fastlisp.o
Symbols from fastlisp.o:
Name Value Class Type Size Line Section
. . .
func__asyncheap_create |00000000000171d8| T | FUNC |00000000000000ec| |.text
func__asyncheap_create_j |00000000000172c4| T | FUNC |0000000000000100| |.text
func__asyncheap_delete |0000000000018bac| T | FUNC |00000000000000fc| |.text
func__asyncheap_delete_j |0000000000018ca8| T | FUNC |0000000000000110| |.text
func__asyncheap_reallocate |000000000001864c| T | FUNC |000000000000014c| |.text
func__asyncheap_reallocate_j |0000000000018798| T | FUNC |0000000000000180| |.text
func__asyncheap_replicate |0000000000018918| T | FUNC |0000000000000140| |.text
func__asyncheap_replicate_j |0000000000018a58| T | FUNC |0000000000000154| |.text
. . .

$ nm CPUPROC.o
Symbols from CPUPROC.o:
Name Value Class Type Size Line Section
. . .
par_func__asyncheap_create |000000000002bd8c| T | FUNC |000000000000020c| |.text
par_func__asyncheap_create_j |000000000002bf98| T | FUNC |000000000000021c| |.text
par_func__asyncheap_delete |000000000002e8fc| T | FUNC |00000000000001f8| |.text
par_func__asyncheap_delete_j |000000000002eaf4| T | FUNC |0000000000000208| |.text
par_func__asyncheap_reallocate |000000000002ddd4| T | FUNC |000000000000027c| |.text
par_func__asyncheap_reallocate_j |000000000002e050| T | FUNC |00000000000002ac| |.text
par_func__asyncheap_replicate |000000000002e2fc| T | FUNC |00000000000002f8| |.text
par_func__asyncheap_replicate_j |000000000002e5f4| T | FUNC |0000000000000308| |.text
. . .

$ _

Terminal

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 16 of 38 =

16. How do you attach to the BMDFM shared memory and allocate permanent data there?

An external application may attach and access the BMDFM shared memory using the following direct shared memory pool
interface. The following example demonstrates this:

Direct shared memory pool interface
#define CHR char
#define UCH unsigned char
#define ULO unsigned long int

extern UCH attach_mempool(int sharedID, ULO mntaddr);
extern UCH detach_mempool(void);

extern void shmempool_on(void);
extern void shmempool_off(void);
extern UCH is_shmempool_on(void);

extern void *reallocpool(void *ptr, ULO size);
extern void freepool(void *ptr);
extern ULO getalignedsizepool(void *ptr);
extern void addmcastrefpool(void *ptr);

extern CHR *shmempoolLUT_add_key_value(CHR **value, const CHR *key);
extern CHR *shmempoolLUT_del_key_value(CHR **key);
extern CHR *shmempoolLUT_get_value(CHR **value, const CHR *key);
extern CHR *shmempoolLUT_get_entire_contents(CHR **contents);
extern void shmempoolLUT_purge_entire_contents(void);

Direct shared memory pool interface

C code: an external application allocates permanent data in the ShMemPool
int main(int argc, char *argv[]){
 CHR *BM_DFM_CONNECTION_FILE_path=NULL,*info=NULL,*temp=NULL,*temp1=NULL,
 *lut_key=NULL,*lut_value=NULL;
 ULO mntaddr;
 int f_descr,sharedID;
 struct _entry_point_struct{
 CHR *str0;
 CHR *str1;
 CHR *strN;
 } entry_point_struct={NULL,NULL,NULL},*entry_point_struct_ptr;

 if((BM_DFM_CONNECTION_FILE_path=getenv("BM_DFM_CONNECTION_FILE_path"))==NULL)
 BM_DFM_CONNECTION_FILE_path=(CHR*)"/tmp/.BMDFMsrv";

 if((f_descr=open(BM_DFM_CONNECTION_FILE_path,0))==-1){
 fprintf(stderr,"Fail opening file `%s'.\n",BM_DFM_CONNECTION_FILE_path);
 exit(1);
 }
 mk_fst_buff(&info,1024);
 read(f_descr,(void*)info,1024);
 close(f_descr);
 if(!cmp(left(&temp,info,9),get_std_buff(&temp1,"BMDFMsrv "))){
 fprintf(stderr,"`%s' is not the BM_DFM connection file.\n",
 BM_DFM_CONNECTION_FILE_path);
 exit(1);
 }
 tail(&info,info);
 head(&temp,info);
 tail(&info,info);
 sharedID=(int)atoi(temp);
 head(&temp,info);
 mntaddr=(ULO)atol(temp);

 shmempool_on();
 if(!attach_mempool(sharedID,mntaddr)){
 fprintf(stderr,"Cannot attach the shared memory pool.\n");
 exit(1);
 }

 if((entry_point_struct_ptr=(struct _entry_point_struct*)reallocpool(NULL,
 sizeof(struct _entry_point_struct)))==NULL){
 fprintf(stderr,"Memory allocation in the shared memory pool failed.\n");
 exit(1);
 }
 get_std_buff_secure(&entry_point_struct.str0,"String 0: I am in ShMemPool.");
 get_std_buff_secure(&entry_point_struct.str1,"String 1: I am in ShMemPool.");
 get_std_buff_secure(&entry_point_struct.strN,"String N: I am in ShMemPool.");
 *entry_point_struct_ptr=entry_point_struct;

 // Allocated entries are persistent.
 // Keep entry_point_struct_ptr somehow available for others, e.g.:
 // shmempool_off();
 // get_std_buff(&lut_key,"Key for our test allocations");
 // equ_num(&lut_value,(SLO)entry_point_struct_ptr);
 // shmempool_on();
 // shmempoolLUT_add_key_value(&lut_value,lut_key);
 // shmempool_off();
 // A consumer can initialize entry_point_struct_ptr like:
 // shmempool_off();
 // get_std_buff(&lut_key,"Key for our test allocations");
 // shmempool_on();
 // shmempoolLUT_get_value(&lut_value,lut_key);
 // shmempool_off();
 // entry_point_struct_ptr=(struct _entry_point_struct*)atol(lut_value);

 shmempool_on();
 if(!detach_mempool()){
 fprintf(stderr,"Cannot detach the shared memory pool.\n");
 exit(1);
 }
 shmempool_off();

 return 0;
}

An external application allocates permanent data in the ShMemPool

Add the code to your cflp_udf.c. Link against one of BMDFMldr.o, BMDFMsrv.o, CPUPROC.o like e.g.:

• gcc -o MyProg cflp_udf.c CPUPROC.o -lpthread -lm

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 17 of 38 =

17. What is the optimal number of the BMDFM processes?

Basically, the optimal number of the BMDFM processes (of each kind) is equal to the number of available system
processors multiplied by 2. Recent server processors are very often the multi-core processors. Therefore, it is better to set the
number of the BMDFM processes according to the number of cores or processing units.

However, it is important to know that CPUPROC processes mainly execute user code, IORBPROC processes run required
dynamic scheduling routines and OQPROC processes perform speculative (somehow a little redundant) dynamic scheduling of
dataflow instructions.

Suppose a user has one dedicated virtual partition on an IBM SMP mainframe based on the POWER architecture. This
partition has 2 dedicated MCM (Multi-Chip Modules) having 4 processors per module and 16 cores per processor with ability
to run 8 threads simultaneously on each core. Hence, the number of processing units is 2*4*16*8=1024, the following settings
are recommended for such configuration:

BMDFMsrv.cfg
N_CPUPROC = 2048 # Number of CPU PROCs
N_IORBPPROC = 2048 # Number of IORBP PROCs
N_OQPROC = 2048 # Number of OQ PROCs

Settings for 1024 processing units

These mnemonic rules could be a good starting point for the initial settings. Later on, the number of the BMDFM processes
can be experimentally tuned depending on application class and architecture of the SMP interconnections.

Note that the multithreaded mode can be configured as well (might be good for multicores and many-cores or for sharing
objects in the process address space rather than in the shared memory pool):

BMDFMsrv.cfg
CPUPROC_MTHREAD = Yes # CPU PROC is multithreaded
OQPROC_MTHREAD = Yes # OQ PROC is multithreaded
IORBPPROC_MTHREAD = Yes # IORBP PROC is multithreaded
BMDFMLDR_MTHREAD = Yes # BMDFMldr is multithreaded

Settings for multithreaded mode

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 18 of 38 =

18. How do you implement a parallel recursive Fibonacci function?

Fibonacci numbers are the integer sequence produced by the following relationship:

Recursive Fibonacci algorithm (pseudo-code)
Fibonacci(0) = 0;
Fibonacci(1) = 1;
Fibonacci(N) = Fibonacci(N - 1) + Fibonacci(N - 2);

Recursive Fibonacci algorithm

Thus, the Fibonacci sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Firstly, we implement a seamless single-threaded recursive Fibonacci function that is about to be added into the BMDFM
configuration profile (or an alternative implementation in C):

Seamless single-threaded recursive Fibonacci implementation (VM code)
(defun FibonacciSeamless # to be placed into .cfg
 (progn
 (setq n (+ 0 $1))
 (if (< n 2)
 n
 (+ (FibonacciSeamless (-- n))
 (FibonacciSeamless (- n 2))
)
)
)
)

Seamless single-threaded recursive Fibonacci (alternative C-implementation)
#define ULO unsigned long int
#define SLO signed long int

SLO _dffib_FibonacciSeamless(SLO n){
 return noterror()&&n>1?_dffib_FibonacciSeamless(n-1)+_dffib_FibonacciSeamless(n-2):n;
}

void dffib_FibonacciSeamless(const ULO *dat_ptr, struct fastlisp_data *ret_dat){
 SLO n;
 ret_ival(dat_ptr,&n);
 if(noterror()){
 ret_dat->single=1;
 ret_dat->type='I';
 ret_dat->value.ival=_dffib_FibonacciSeamless(n);
 }
 return;
}

INSTRUCTION_STRU INSTRUCTION_SET[]={
 {"FIBONACCISEAMLESS",1,'I',(UCH*)"I",&dffib_FibonacciSeamless}
};

Seamless single-threaded recursive Fibonacci implementation

And then, we write a simple trivial implementation of our parallel multithreaded recursive Fibonacci function into the
Fibonacci.flp file (note that we need neither special parallelization directives nor special reserved function names; we have
“wrapped” the FibonacciSeamless function with the FibonacciCoordinator function in order to limit “unlimited parallelism”):

Parallel multithreaded recursive Fibonacci implementation (VM code)
(defun FibonacciCoordinator # to be placed into .flp
 (progn
 (setq n (+ 0 $1))
 (setq spawn (+ 0 $2))
 (if (< n 2)
 n
 (if (> spawn 0)
 (+ (FibonacciCoordinator (-- n) (>> spawn 1))
 (FibonacciCoordinator (- n 2) (>> spawn 1))
)
 (+ (FibonacciSeamless (-- n))
 (FibonacciSeamless (- n 2))
)
)
)
)
)

(defun Fibonacci
 (progn
 (setq n (+ 0 $1))
 (setq spawn (n_cpuproc))
 (FibonacciCoordinator n spawn)
)
)

main() begins here
(setq n (+ 0 $1))
(Fibonacci n)

Fibonacci.flp containing parallel multithreaded recursive Fibonacci implementation

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 19 of 38 =

19. How do you rewrite application example from the BMDFM manual in pure VM language?

The application example from the BMDFM manual can be rewritten using e.g. asynchronous heaps:

fastlisp.cfg/BMDFMsrv.cfg
(defun dhtpipe0_generate # $1=array, $2=n, $3=m.
 (progn
 (setq array (+ 0 $1))
 (setq n (+ 0 $2))
 (setq m (+ 0 $3))
 (setq m_1 (-- m))
 (setq n_1 (-- n))
 (for i 0 1 n_1
 (for j 0 1 m_1
 (asyncheap_putfloat array (*+ m i j) (frnd 1.))
)
)
 array
)
)

(defun dhtpipe0_dht # $1=target_array, $2=n, $3=m,
 # $4=source_array.
 (progn
 (setq target_array (+ 0 $1))
 (setq n (+ 0 $2))
 (setq m (+ 0 $3))
 (setq source_array (+ 0 $4))
 (setq c1 (/. (*. 2. (pi)) n))
 (setq s1 (/. (*. 2. (pi)) m))
 (setq m_1 (-- m))
 (setq n_1 (-- n))
 (for p 0 1 n_1
 (for q 0 1 m_1 (progn
 (setq s 0.)
 (for i 0 1 n_1
 (for j 0 1 m_1
 (setq s (*+. (asyncheap_getfloat source_array
 (*+ m i j)) (cas (*+. c1 (*. p i) (*. s1 (*.
 q j)))) s))
)
)
 (asyncheap_putfloat target_array (*+ m p q) s)
))
)
 target_array
)
)

(defun dhtpipe0_idht # $1=target_array, $2=n, $3=m, $4=source_array.
 (progn
 (setq target_array (+ 0 $1))
 (setq n (+ 0 $2))
 (setq m (+ 0 $3))
 (setq source_array (+ 0 $4))
 (setq c1 (/. (*. 2. (pi)) n))
 (setq s1 (/. (*. 2. (pi)) m))
 (setq m_1 (-- m))
 (setq n_1 (-- n))
 (for p 0 1 n_1
 (for q 0 1 m_1 (progn
 (setq s 0.)
 (for i 0 1 n_1
 (for j 0 1 m_1
 (setq s (*+. (asyncheap_getfloat source_array (*+ m i j))
 (cas (*+. c1 (*. p i) (*. s1 (*. q j)))) s))
)
)
 (asyncheap_putfloat target_array (*+ m p q) (/. (/. s n) m))
))
)
 target_array
)
)

(defun dhtpipe0_compare # $1=array0, $2=array1, $3=n, $4=m.
 (progn
 (setq array0 (+ 0 $1))
 (setq array1 (+ 0 $2))
 (setq n (+ 0 $3))
 (setq m (+ 0 $4))
 (|| (> (fabs (-. (asyncheap_getfloat array0 0) (asyncheap_getfloat
 array1 0))) 1e-10) (> (fabs (-. (asyncheap_getfloat array0 (*+ m
 (-- n) (-- m))) (asyncheap_getfloat array1 (*+ m (-- n) (-- m)))))
 1e-10))
)
)

dhtpipe0.flp
(progn
 (outf
 "Pipeline calculation of the 2D nonseparative Hartley transform.\n\n" 0)
 (setq m (ival (accept "M-value of M*N-matrix: ")))
 (setq n (ival (accept "N-value of M*N-matrix: ")))
 (setq numb (ival (accept "How many input data packs: ")))
 (setq arrays_size (* (* m n) (len (dump_f2s 0.))))
 (for i 1 1 numb (progn
 (outf "Sequence %ld:" i)
 # 1.
 (setq inp_array_sync (& 0
 (setq inp_array_addr (asyncheap_create arrays_size))
))
 # 2.
 (setq inp_array_sync (& 0
 (setq inp_array_addr
 (dhtpipe0_generate (| inp_array_sync inp_array_addr) n m))
))
 # 3.
 (setq dht_array_sync (& 0
 (setq dht_array_addr (asyncheap_create arrays_size))
))
 # 4.
 (setq dht_array_sync (setq inp_array_sync (& 0
 (setq dht_array_addr
 (dhtpipe0_dht (| dht_array_sync dht_array_addr) n m inp_array_addr))
)))
 # 5.
 (setq idht_array_sync (& 0
 (setq idht_array_addr (asyncheap_create arrays_size))
))
 # 6.
 (setq idht_array_sync (setq dht_array_sync (& 0
 (setq idht_array_addr
 (dhtpipe0_idht (| idht_array_sync idht_array_addr) n m dht_array_addr))
)))
 # 7.
 (setq inp_array_sync (setq idht_array_sync (& 0
 (setq cmp_res (dhtpipe0_compare inp_array_addr idht_array_addr n m))
)))
 (outf " %s.\n" (if cmp_res "Fail" "Ok"))
 # 8.
 (asyncheap_delete (| inp_array_sync inp_array_addr))
 (asyncheap_delete (| dht_array_sync dht_array_addr))
 (asyncheap_delete (| idht_array_sync idht_array_addr))
))
 ""
)

fastlisp.cfg/BMDFMsrv.cfg and dhtpipe0.flp

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 20 of 38 =

20. How do you enable parallel reduction operation?

Suppose that we have the following parallel code with sequential accumulative operation e.g. string concatenation:

Sequential concatenations (VM code)

Concatenation is sequential: #

|------------------------------------Sequential------------------------------------| #
((((((((str0 1+ str1) 2+ str2) 3+ str3) 4+ str4) 5+ str5) 6+ str6) 7+ str7) 8+ str8) #

Total sequential concatenations: 8 #

(setq iterations 8)
(setq result "")

(for k 0 1 iterations (progn
 (setq string (generate_substr k)) # generation of each string part runs in parallel
 (setq result (cat result string)) # concatenations of each string part run sequentially
))

Concatenations run sequentially

In order to run our sequential concatenation operations in parallel, we split our main iteration loop into two loops: outer
loop and inner nested loop dividing the entire iteration range into N of M-subranges where N and M are square root of the total
number of iterations. Thus, each subrange will be independent in the dataflow graph and will be computed in parallel to other
subranges:

Parallel concatenations after applying reduction (VM code)

Concatenation is parallel after applying reduction: #

|---------Sequential---------| #
((((str0 1+ str1) 2+ str2) |-----Parallel-----| #
3+ #
((str3 1+ str4) 2+ str5)) |-----Parallel-----| #
4+ #
((str6 1+ str7) 2+ str8)) |-----Parallel-----| #

Total sequential concatenations: 4 #

(setq iterations 8)
(setq result "")

(setq rsize (++ (ival (sqrt iterations)))) # rsize is 3

(for k_ 0 rsize iterations (progn
 (setq result_ "")
 (setq kk (-- (if (> (+ k_ rsize) iterations) iterations (+ k_ rsize))))
 (for k k_ 1 kk (progn
 (setq string (generate_substr k)) # generation of each string part runs in parallel
 (setq result_ (cat result_ string)) # concatenations of the subrange run sequentially
))
 (setq result (cat result result_)) # subranges run in parallel
))

Concatenations run in parallel after applying reduction

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 21 of 38 =

21. How do you find out runtime error location in expression typed on BMDFM Server console?

In case of a runtime error, the error location in the user application code can be identified by using -sd or --showDebugInfo
command line option. However, if an error-prone expression is typed directly on the BMDFM Server console, only a Dbg
location number is shown. In seldom cases where the typed expression might be quite long, the exact error location can be hard
to identify:

BMDFM Server console input (VM code)

(progn (defun foo (++ a)) (foo))

BMDFM Server console output

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Fnc=Main:FOO; Dbg=136;
Var=A)

BMDFM Server console output (when env. var. is set: export BM_DFM_COMPILE_WITH_DEBUGINFO=0;)

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Dbg=88; Var=1)

Input/Output on the BMDFM Server console

A solution is to type the expression as an argument of mapcar function (see description of mapcar function in the
documentation). Note that Dbg location number can change (Dbg=136 vs. Dbg=152) because the bytecode debug info also
stores (memory-aligned) function names (Main:FOO vs. Main_Mapcar:FOO).

BMDFM Server console input (VM code)

Input 0:

(progn (setq m_out (mapcar "(progn (defun foo (++ a)) (foo))")) (index m_out 5))

Input 1:

(progn (setq m_out (mapcar "(progn (defun foo (++ a)) (foo))")) (index m_out 10))

BMDFM Server console output

Output 0:

Variable_getval: variable was not initialized before use! (Fnc=Main_Mapcar:FOO; Dbg=152;
Var=A)

Output 1:

(PROGN (DEFUN FOO (++ (REM Dbg=144) A (REM Dbg=152))) (REM Dbg=176) (FOO))

BMDFM Server console output (when env. var. is set: export BM_DFM_COMPILE_WITH_DEBUGINFO=0;)

Output 0:

Variable_getval: variable was not initialized before use! (Dbg=88; Var=1)

Output 1:

(PROGN (DEFUN Udf_1 (++ (REM Dbg=80) Var_1 (REM Dbg=88))) (REM Dbg=112) (Udf_1))

Input/Output on the BMDFM Server console

Runtime error tracking can also be automated by adding new function into the BMDFM Server configuration profile:

BMDFM Server configuration profile (VM code)
. . .
 (defun flp
 (progn
 (alsetq ran (mapcar $1))
 (setq output (index ran 0))
 (if (index ran 2)
 (cat output (cat (str_fmt "[Syntax error %ld]: " (index ran 2))
 (index ran 3)))
 (if (index ran 4)
 (cat output (cat (str_fmt "[Run-time error %ld]: " (index ran
 4)) (cat (index ran 5) (cat " " (index ran 10)))))
 (progn
 (alsetq res (index ran 1))
 (if (> (indices res) 1)
 (cat output (format_list_4print res))
 (cat output (cat "" res))
)
)
)
)
)
)

Runtime error tracking function in the BMDFM Server configuration profile

Now, we will get the following error message when typing our expression as an argument of our new flp function:

BMDFM Server console input (VM code)

(flp "(progn (defun foo (++ a)) (foo))")

BMDFM Server console output

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Fnc=Main_Mapcar:FOO;
Dbg=152; Var=A) (PROGN (DEFUN FOO (++ (REM Dbg=144) A (REM Dbg=152))) (REM Dbg=176) (FOO))

BMDFM Server console output (when env. var. is set: export BM_DFM_COMPILE_WITH_DEBUGINFO=0;)

[RunTimeErrCode=10] Variable_getval: variable was not initialized before use! (Dbg=88; Var=1) (PROGN
(DEFUN Udf_1 (++ (REM Dbg=80) Var_1 (REM Dbg=88))) (REM Dbg=112) (Udf_1))

Input/Output on the BMDFM Server console

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 22 of 38 =

22. How serious is the performance degradation of pure unparalleled VM byte code?

For the performance test, a test program was rewritten in pure ANSI C, in Java and in the native VM language. This
testbench comes from the area of discrete trigonometric transformations, namely the “2D non-separate Hartley transform”. Full
source code can be found in the BMDFM distribution package. Below, only fragments of the code are given for comparison:

Pure ANSI C code fragment (testbench.c)
void dht(DFL *target_array, SLO n, SLO m, DFL *source_array){
 SLO i,j,p,q;
 DFL pi,c1,s1,sum,tmp;
 pi=3.1415926535897932;
 c1=2*pi/n;
 s1=2*pi/m;
 for(p=0;p<n;p++)
 for(q=0;q<m;q++){
 sum=0;
 for(i=0;i<n;i++)
 for(j=0;j<m;j++)
 sum+=(*(source_array+i*m+j)*(cos(tmp=c1*p*i+s1*q*j)+sin(tmp)));
 *(target_array+p*m+q)=sum;
 }
 return;
}

Java VM code fragment (testbench.java)
public static void dht(double target_array[], int n, int m,
 double source_array[]){
 int i,j,p,q;
 double pi,c1,s1,sum,tmp;
 pi=3.1415926535897932;
 c1=2*pi/n;
 s1=2*pi/m;
 for(p=0;p<n;p++){
 for(q=0;q<m;q++){
 sum=0;
 for(i=0;i<n;i++){
 for(j=0;j<m;j++){
 sum+=(source_array[i*m+j]*(Math.cos(tmp=c1*p*i+s1*q*j)+Math.sin(tmp)));
 }
 }
 target_array[p*m+q]=sum;
 }
 }
 return;
}

Native VM code fragment (testbench.flp)
(defun dht (progn
 (setq target_array (+ 0 $1))
 (setq n (+ 0 $2))
 (setq m (+ 0 $3))
 (setq source_array (+ 0 $4))
 (setq c1 (/. (*. 2. (pi)) n))
 (setq s1 (/. (*. 2. (pi)) m))
 (setq m_1 (-- m))
 (setq n_1 (-- n))
 (for p 0 1 n_1
 (for q 0 1 m_1 (progn
 (setq s 0.)
 (for i 0 1 n_1
 (for j 0 1 m_1
 (setq s (*+. (asyncheap_getfloat source_array (*+ m i j))
 (cas (*+. c1 (*. p i) (*. s1 (*. q j)))) s))
)
)
 (asyncheap_putfloat target_array (*+ m p q) s)
))
)
))

Benchmarked fragments of code

The testbench was benchmarked on various processors (Opteron, Itanium, POWER) demonstrating nearly the same
average performance degradation ratio on these processors:

Benchmarks
Pure ANSI C compiled machine code: 100sec. (1.0 – baseline)
 Java VM running Java byte code: 300sec. (3.0 - times slower)
Native VM running BMDFM byte code: 550sec. (5.5 - times slower)

Test results

Thus, the performance degradation of pure unparalleled VM byte code is 5.5 times compared to ANSI C compiled machine
code. As a conclusion, it is worth highlighting two general ideas:

• BMDFM that runs application byte code (preferably structured in coarse-grain functions) on an 8-way SMP machine
can outperform unparalleled ANSI C compiled machine code.

• Use of VM becomes much more efficient when the VM is extended with C-implementations of frequently used coarse-
grain functions.

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 23 of 38 =

23. How does the relaxed consistency model of shared memory influence BMDFM?

Although the question of how consistent shared memory is seems simple, it is remarkably complicated, as is shown with a
simple example:

Process 0 shares A and B (pseudo-code)
a=1;
// . . .
a=0;
if(b){
 // . . .
}

Process 1 shares A and B (pseudo-code)
b=1;
// . . .
b=0;
if(a){
 // . . .
}

Concurrent processes running on different processors

Assume that the processes are running on different processors, and that locations of A and B are originally cached by both
processors with the initial value of 1. If writes always take immediate effect and are immediately seen by other processors, it
will be impossible for both if-statements to evaluate their conditions as true, since reaching the if-statement means that either A
or B must have been assigned the value 0. But suppose the write invalidate is delayed, and the processor is allowed to continue
during this delay – then it is possible that both processes have not seen the invalidation for B and A, respectively, before they
attempt to read the values. In other words, processed data can be invisible for the other processor because data has not even left
the boundaries of the processor where it was processed.

The most straightforward model for memory consistency is called sequential consistency. Sequential consistency requires
that the result of any execution be the same as if the memory accesses executed by each processor were kept in order and the
accesses among different processors were arbitrarily interleaved. Sequential consistency eliminates the possibility of some non-
obvious execution in the previous example, because the assignments must be completed before the if-statements are initiated.
The sequential consistency model has a performance disadvantage.

To provide better performance, researchers and architects have designed relaxed consistency of shared memory, which
yields a variety of models including weak ordering, the Alpha consistency model, the PowerPC consistency model, and
release consistency depending on the details of the ordering restrictions and how synchronization operations enforce ordering.
The main idea from the programmer’s point of view is that data becomes consistent when a synchronization primitive is called.

Memory Ordering X86 AMD64 IA64 PA-RISC SPARC
RMO

SPARC
PSO

SPARC
TSO

POWER S/390 Alpha

Loads reordered after loads Y Y Y Y Y
Loads reordered after stores Y Y Y Y Y
Stores reordered after stores Y Y Y Y Y Y
Stores reordered after loads Y Y Y Y Y Y Y Y Y Y
Atomic instructions reordered with loads Y Y Y Y
Atomic instructions reordered with stores Y Y Y Y Y
Dependent loads reordered Y
Incoherent instructions cache/pipeline Y Y Y Y Y Y Y Y

Memory ordering in various processors

And now let’s go back to BMDFM. Speculative parallel OQPROC scheduling processes, for the sake of performance, call
only a reduced number of necessary synchronization primitives. Normally, such a strategy is acceptable when running
BMDFM, for example, on the Intel architecture, which tends to be more sequentially consistent. A problem can appear when
running BMDFM, for example, on the IBM POWER architecture exploiting relaxed consistency – a dead stall can be
observed. Experimentally, such a stall can happen one time per month in average when running BMDFM in an intensive batch
mode on an 8-way POWER machine.

BMDFM has built-in facilities to compensate the influence of the relaxed consistency model of shared memory. These
compensation mechanisms are activated by the RELAXED_CNSTN_SM_MODEL configuration parameter of the BMDFM
configuration profile, and they are activated by default. It is strongly recommended to keep them activated if the consistency
model of SMP machine is not clear enough.

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 24 of 38 =

24. How does the BMDFM dataflow engine process an array?

The addressed issue is very interesting and very sensitive in all known implementations of dataflow machines. For example,
the famous Monsoon dataflow machine project (Motorola Cambridge Research Center) provides a classical solution of this
problem based on i-structures, that is fairly efficient, however, still not efficient enough. BMDFM uses the advanced approach
described below.

Arrays are not contexted data – this would be too expensive. By default, BMDFM accesses array's members in parallel,
detecting overwritten values. An overwritten value is detected as a violation of the single assignment paradigm. For most
typical cases like the following, this approach works well, causing no violation:

Pseudo-code
for(i=0;i<=N;i++)
 a[i]=...;
for(i=0;i<=N;i++)
 b[i]=...a[i]...;

Fragment without violation of single assignment

If a violation of single assignment is detected, then BMDFM recommends using the HARD_ARRAY_SYNCHRO
configuration parameter of the BMDFM configuration profile. In the case of hard array synchronization, BMDFM tracks all
array accesses and does assignments sequentially. Thus, no contentions appear, and, besides, such a sequential fine-grain access
works faster anyway than the fine-grain access round trips through the dataflow machinery.

Let’s describe the use cases of array processing in BMDFM.
USECASE 0: There are multiple fine-grain assignments of the array's members running in parallel without using

HARD_ARRAY_SYNCHRO serialization. Having the input code fragment described below, the generated input to the
BMDFM dataflow engine works correctly in parallel because arrays are local for func0 and func1 and, thus, in the different
contexts:

Initial sequence (pseudo-code)
for(i=0;i<=N;i++)
 a[i]=...;
for(i=0;i<=N;i++)
 a[i]=...;

Generated input to the BMDFM dataflow engine (pseudo-code)
func0(array){
 for(i=0;i<=N;i++)
 array[i]=...;
 return array;
}
func1(array){
 for(i=0;i<=N;i++)
 array[i]=...;
 return array;
}
a=func0(a);
a=func1(a);

Fragments for USECASE 0

USECASE 1: Assigned values are heavyweight computations. Then serialization of HARD_ARRAY_SYNCHRO ensures
correctness and at the same time does not bring any performance degradations:

Initial sequence (pseudo-code)
for(i=0;i<=N;i++)
 a[i]=func();

Generated input to the BMDFM dataflow engine (pseudo-code)
for(i=0;i<=N;i++){
 temp=func(); // contexted, heavy-weight computations are parallel.
 a[i]=temp; // sequential, no performance degradations.
}

Fragments for USECASE 1

USECASE 2: Array processing is done in a coarse-grain fashion. In this case, the above mentioned func0 and func1 are
seamless for the dataflow scheduler, thus, the dynamic scheduler is not aware of the arrays at all:

Pseudo-code
func0(array){ // defined as a seamless function
 for(i=0;i<=N;i++)
 array[i]=...;
 return array;
}

func1(array){ // defined as a seamless function
 for(i=0;i<=N;i++)
 array[i]=...;
 return array;
}

Fragments for USECASE 2

USECASE 3: Finally, the arrays can be processed as normal arrays programmed in C via pointers. In this case, the parallel
array processing is reduced to the known case of "Synchronization of Asynchronous Coarse-Grain and Fine-Grain Functions".

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 25 of 38 =

25. How do you enable late binding for a precompiled program?

Suppose, we have a problem.flp calling (mapcar) with UDF's that are defined in .cfg, e.g.:

Terminal
$ cat problem.flp
. . .
(fastlisp "(flog1 -2 -8)") # (fastlisp) and (flog1) are defined in .cfg

$ fastlisp -c problem.flp
. . .
3.0000000000000000E+00

$ fastlisp -q problem.flx
[Syntax error 3]: In function `(Main)': undefined function name `FLOG1': (flog1 -2 -8)

$ _

Terminal

When running a precompiled program, .cfg is not loaded in sake of performance.
Note that `BMDFMldr -c problem.flp; BMDFMldr -q problem.flz` works correctly since .cfg is loaded by the BMDFM

Server.

Here is a simple solution on how we can run our precompiled problem.flx in a way that (mapcar) still works for .cfg-
defined UDF's. Conventional wisdom tells us to write a trivial just-one-line-of-code flxrunner.flp helper:

Terminal
$ cat flxrunner.flp
(fastlisp (rightl (get_file $1) (<< (len (dump_i2s 0)) 1))) # (fastlisp) and (get_file) are in .cfg

$ fastlisp -q flxrunner.flp problem.flx
3.0000000000000000E+00

$ _

Terminal

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 26 of 38 =

26. How do you fix unresolved dependencies introduced by vendor's proprietary compiler?

In order to achieve better optimization level on different target platforms BMDFM is built using vendor’s proprietary
compilers for the target platforms where possible. Users might want to write their own C-interface extensions and rebuild
BMDFM using e.g. publicly available gcc compiler. This works pretty well in general, however, sometimes leading to harmless
side-effects and minor inconvenience issues:

Terminal
$ source /opt/intel/composer_xe_2015.0.090/bin/compilervars.sh intel64
$ icc -mmic -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread

$ /usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread
. . .
BMDFMsrv.o: In function `copy_flp_data_':
(.text+0xe946): undefined reference to `_intel_fast_memset'
BMDFMsrv.o: In function `copy_flp_data_':
(.text+0xe98b): undefined reference to `_intel_fast_memcpy'
BMDFMsrv.o: In function `_reallocpool':
(.text+0x27136): undefined reference to `_intel_fast_memmove'
BMDFMsrv.o: In function `rat':
(.text+0x29491): undefined reference to `_intel_fast_memcmp'
. . .
$ _

Cross-compiling for native Intel Xeon Phi MIC on Linux

Terminal
$ cc –q64 -o CPUPROC CPUPROC.o cflp_udf.o -lm -lpthread

$ gcc -maix64 -o CPUPROC CPUPROC.o cflp_udf.o -lm -lpthread
. . .
ld: 0711-317 ERROR: Undefined symbol: .__xl_log
ld: 0711-317 ERROR: Undefined symbol: .__xl_exp
ld: 0711-317 ERROR: Undefined symbol: .__xl_cos
ld: 0711-317 ERROR: Undefined symbol: .__xl_sin
ld: 0711-317 ERROR: Undefined symbol: .__xl_atan
ld: 0711-317 ERROR: Undefined symbol: .__xl_tanh
. . .
$ _

Compiling for RS/6000 on POWER AIX

The solution is to use another linker or link explicitly against an appropriate vendor’s library, e.g.:

Terminal
$ /usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread
. . .
BMDFMsrv.o: In function `copy_flp_data_':
(.text+0xe946): undefined reference to `_intel_fast_memset'
BMDFMsrv.o: In function `copy_flp_data_':
(.text+0xe98b): undefined reference to `_intel_fast_memcpy'
BMDFMsrv.o: In function `_reallocpool':
(.text+0x27136): undefined reference to `_intel_fast_memmove'
BMDFMsrv.o: In function `rat':
(.text+0x29491): undefined reference to `_intel_fast_memcmp'
. . .
$ /usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm –lpthread
-L/opt/intel/composer_xe_2015.0.090/compiler/lib/mic/ -lirc
$ _

Cross-compiling for native Intel Xeon Phi MIC on Linux

If the required vendor’s library is not available then (in case of urgency) an own trivial stub implementation can be added to
the C-interface extension, e.g.:

C code
void *_intel_fast_memset(void *s, int c, size_t n){
 return memset(s,c,n);
}
void *_intel_fast_memcpy(void *dest, const void *src, size_t n){
 return memcpy(dest,src,n);
}
void *_intel_fast_memmove(void *dest, const void *src, size_t n){
 return memmove(dest,src,n);
}
int _intel_fast_memcmp(const void *s1, const void *s2, size_t n){
 return memcmp(s1,s2,n);
}

double __xl_log(double x){
 return log(x);
}
double __xl_exp(double x){
 return exp(x);
}
double __xl_cos(double x){
 return cos(x);
}
double __xl_sin(double x){
 return sin(x);
}
double __xl_atan(double x){
 return atan(x);
}
double __xl_tanh(double x){
 return tanh(x);
}

Own trivial stub implementation of the missing functions

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 27 of 38 =

27. How do you build fastlisp.exe with MS VS linking against cygwin1.dll?

Download and install latest version of Cygwin. You will need latest cygwin1.dll and crt0.c. You will also need to build your
own my_crt0.c into a DLL in a Cygwin prompt.

Download impdef.exe for Windows. Use the impdef.exe program to generate a cygwin1.def file for the cygwin1.dll in a
Windows prompt:

Windows prompt
> impdef cygwin1.dll >cygwin1.def
> _

Generation of definition file

Use the MS VS linker (lib.exe) to generate an import library in a Windows prompt:

Windows prompt
> "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat"
> lib /def:cygwin1.def /out:cygwin1.lib
> _

Generation of import library file

Create a file my_crt0.c with the following contents:

C code
#include <sys/cygwin.h>
#include <stdlib.h>

typedef int (*MainFunc)(int argc, char *argv[], char **env);

void my_crt0(MainFunc f){
 cygwin_crt0(f); /* cygwin1.dll needs to be initialized */
}

Auxiliary C file

Use gcc in a Cygwin prompt to build my_crt0.c into a DLL (e.g. my_crt0.dll):

Cygwin prompt
$ gcc my_crt0.c -shared -o my_crt0.dll
$ _

Generation of DLL

Generate my_crt0.def and my_crt0.lib files for the my_crt0.dll in a Windows prompt:

Windows prompt
> impdef my_crt0.dll >my_crt0.def
> lib /def:my_crt0.def /out:my_crt0.lib
> _

Generation of definition file and import library file

Copy crt0.c from your Cygwin installation and include it into your sources for MS VS. Modify it to call my_crt0() instead
of cygwin_crt0(). Build your object files using the MS VS compiler cl.exe, e.g.:

Windows prompt
> cl cflp_udf.c crt0.c /o "fastlisp.exe" /D "_NOT_UNIX_" /link /NODEFAULTLIB fastlisp.o my_crt0.lib
cygwin1.lib
> _

Generation of executable file

Note that if you are using any other Cygwin based libraries then you will probably need to build them as DLL’s using gcc
and then generate import libraries for the MS VS linker.

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 28 of 38 =

28. How do you start BMDFM on Windows with Cygwin?

Please, read the following user story:

BMDFM and Cygwin

- I have an old version of Cygwin and I cannot start BMDFM. Probably my Cygwin version does not support POSIX for 100%.

- No problem. We can try to start BMDFM with your current Cygwin version. Which error message did you get?

- Single-threaded version works fine, but when I start BMDFMsrv I get the following error:

 [Msg]: Determining the system semaphore parameters...
 Cannot determine sems_per_group for SVR4 sema4.
 ProcName=BMDFMsrv, PID=4104, tID=4104, Module=mem_pool, Function=sem4svr4_determ(), Location=2.
 semget(key_t key = 0(IPC_PRIVATE), int nsems = 1, int shmflg = 1968(512(IPC_CREAT)|1024(IPC_EXCL)|432(permissions)))

- What did you get when your try ipcs?

- $ ipcs
 ipcs: msgctl: Function not implemented

- Ok. You need to start Cygwin server:

 $ /usr/sbin/cygserver.exe &
 [1] 3280
 cygserver: Initialization complete. Waiting for requests.

- BMDFM still does not start and hangs while starting PROCstat:

 [SysMsg]: Forking up and handshaking the PROCstat daemon...
 PROCstat daemon does not respond.
 ProcName=BMDFMsrv, PID=2292, tID=2292, Module=BMDFMsrv, Function=main(), Location=125.

- Try to attach strace to the PROCstat process. What do you see?

- $ strace -p 2412
 . . .
 136 432630 [main] PROCstat 2412 __set_errno: static int semaphore::wait(semaphore**):3925 setting errno 22
 59 432689 [main] PROCstat 2412 __set_errno: static int semaphore::wait(semaphore**):3925 setting errno 22
 50 432739 [main] PROCstat 2412 __set_errno: static int semaphore::wait(semaphore**):3925 setting errno 22
 . . .

- Ok. Your Cygwin does not fully support POSIX semaphores. Seems they do not work for multi processes.
 Let us switch BMDFM to SVR4 semaphores.
 Please, comment the following line in your BMDFMsrv.cfg file:

 #POSIX_SEMA4_SYNC = RW+Count # Replace None/RW/RW+Count SVR4 with POSIX sema4

- BMDFM still does not start:

 [SysMsg]: Setting up the Task Connection Zone (TCZ)...
 Cannot create semaphore.
 ProcName=BMDFMsrv, PID=4720, tID=4720, Module=BMDFMsrv, Function=main(), Location=50, SysCall=semget(), errno=28
 : No space left on device

 *** EMERGENCY EXIT from the BM_DFM Server session. ***
 BM_DFM KERNEL PANIC, RETURNED STATUS: ABNORMAL PROGRAM TERMINATION.

- Ok. There is insufficient number of semaphores in the default configuration of the Cygwin server.
 Change the following settings in your /etc/cygserver.conf file and restart the Cygwin server:

 # kern.ipc.semmni: Maximum no. of semaphore identifiers hold concurrently.
 # Default: 10, Min: 1, Max: 1024
 kern.ipc.semmni 1024

 # kern.ipc.semmns: Maximum no. of semaphores hold concurrently.
 # Default: 60, Min: 1, Max: 1024
 kern.ipc.semmns 1024

 # kern.ipc.semmsl: Maximum no. of semaphores per semaphore id.
 # Default: 60, Min: 1, Max: 1024
 kern.ipc.semmsl 1024

- BMDFMsrv starts now. But BMDFMldr fails to start:

 $ BMDFMldr hello.flp
 Current termcap settings:
 TERM_TYPE=`xterm'; LINES_TERM=`35'; COLUMNS_TERM=`124';
 CLRSCR_TERM=`\e[H\e[2J'; REVERSE_TERM=`\e[7m'; BLINK_TERM=`\e[5m';
 BOLD_TERM=`\e[1m'; NORMAL_TERM=`\e[0m'; HIDECURSOR_TERM=`\e[?25l';
 SHOWCURSOR_TERM=`\e[?12l\e[?25h'; GOTOCURSOR_TERM=`\e[%i%d;%dH'.
 Reading the `/tmp/.BMDFMsrv' BM_DFM connection file...
 Opening the `/tmp/.BMDFMsrv_npipe' BM_DFM named FIFO pipe...
 Cannot open the named fifo pipe for R/W `/tmp/.BMDFMsrv_npipe'.
 ProcName=BMDFMldr, PID=5048, tID=5048, Module=BMDFMldr, Function=main(), Location=11, SysCall=open(), errno=16
 : Device or resource busy

 $ ls -la /tmp/.BMDFMsrv_npipe
 prw-rw-rw- 1 user None 0 Apr 13 23:42 /tmp/.BMDFMsrv_npipe

- What do you see when you start BMDFMldr with strace?

- $ strace BMDFMldr hello.flp
 . . .
 27 205505 [main] BMDFMldr 1120 open: -1 = open(/tmp/.BMDFMsrv_npipe, 0x8002), errno 16
 . . .

- Ok. Your Cygwin does not fully support named pipes. Let us do the following trick in the shell where you run your BMDFMldr:
 $ echo -n >npip
 $ export BM_DFM_CONNECTION_NPIP_path=npip
 $ tail -f npip >/tmp/.BMDFMsrv_npipe &
 $ BMDFMldr hello.flp

- Thank you! Everything works fine now.

BMDFM and Cygwin

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 29 of 38 =

29. Why cannot sem_maxval be determined for POSIX sema4?

The BMDFM Server may fail to start with an error message regarding POSIX sema4, e.g. when starting on Windows
SFU/SUA:

C:\HOME\BMDFM_Win32-SFU-SUA - cmd.exe
| [SysMsg]: Squeezing nested PROGN statements in the Global FastLisp function set... |
| [SysMsg]: Redundant nested PROGN statements removed: 0. |
| [SysMsg]: Resolving data types in the Global FastLisp function set... |
| [SysMsg]: Compiling the Global FastLisp function source code (Pass One)... |
| [DFMKrnl]: Compiled Global function bytecode size is 7964Bytes. |
| [SysMsg]: Linking compiled Global function bytecode (Pass Two)... |
| [Msg]: Determining the system semaphore parameters... |
 * Stay alert! Information you are about to view is being logged as `BOOT DUMP'.

Cannot determine sem_maxval for POSIX sema4.
ProcName=BMDFMsrv, PID=1793, tID=1793, Module=mem_pool, Function=sem4posix_determ(), Location=4.

C:\HOME\BMDFM_Win32-SFU-SUA> _

Starting the BMDFM Server in a Windows prompt

The reason might be that the POSIX sema4 functionality is not fully supported by the OS. This can be easily tested as
shown below:

C:\HOME\BMDFM_Win32-SFU-SUA - cmd.exe
C:\HOME\BMDFM_Win32-SFU-SUA> C:\Windows\SUA\bin\ed
a
/* posixsem4_test.c */

#include <stdlib.h>
#include <stdio.h>
#include <semaphore.h>

int main(void){
 sem_t sem; /* posix sema4 */
 int pshared=1; /* share sema4 among processes */
 unsigned int value=0; /* initial sema4 value */

 printf("sem_init(shared) has returned %d\n",sem_init(&sem,pshared,value));
 perror(NULL);
 return 0;
}
.
w posixsem4_test.c
364
q

C:\HOME\BMDFM_Win32-SFU-SUA> C:\Windows\SUA\opt\gcc.4.2\bin\gcc -L /dev/fs/C/Windows/SUA/usr/lib/x86 -
o posixsem4_test posixsem4_test.c

C:\HOME\BMDFM_Win32-SFU-SUA> posixsem4_test
sem_init(shared) has returned -1
Not supported

C:\HOME\BMDFM_Win32-SFU-SUA> _

Testing whether POSIX sema4 can be shared among processes

In case where the POSIX sema4 cannot be shared among processes, BMDFM has to be configured for using SVR4 sema4
functionality:

BMDFMsrv.cfg
. . .
POSIX_SEMA4_SYNC = None # Replace None/RW/RW+Count SVR4 with POSIX sema4
. . .

SVR4 sema4 settings

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 30 of 38 =

30. How do you run BMDFM on Linux with glibc that is older than required by BMDFM?

This is the error you might get when you run BMDFM against an old glibc, e.g.:

Terminal
$ BMDFMsrv
BMDFMsrv: /lib64/ld-linux.so.2: version `GLIBC_2.12' not found
BMDFMsrv: /lib64/libc.so.6: version `GLIBC_2.12' not found
BMDFMsrv: /lib64/libpthread.so.0: version `GLIBC_2.12' not found
$ _

Unresolved externals due to older library version

In order to stay non-intrusive to the system, it is possible to have multiple versions of glibc on the same system. Download
and install required version of glibc into your private (e.g. /home/myglibc64) directory to be used and linked against BMDFM.

Dynamically linked ELF-executables always specify a dynamic linker or interpreter, which is a program that actually loads
the executable along with all its dynamically linked libraries. The absolute path to the interpreter (e.g. /lib64/ld-linux.so.2 on
64-bit Linux) is hard-coded into the executable at link time. This absolute path can also be changed after the link is done, e.g.
by a binary editor modifying the interpreter section of executable. However, this is not quite trivial because the path of the new
interpreter may be longer than the old one. Download and install patchelf utility that takes care of increasing the executable
size with sufficient space at the beginning to contain the new interpreter field. Note that the resulting executables may be one
page (usually 4KB) larger.

Adjust BMDFM to use glibc from your private /home/myglibc64 directory:

Terminal
$ for i in fastlisp BMDFMsrv PROCstat IORBPROC OQPROC CPUPROC BMDFMldr BMDFMtrc freeIPC; do patchelf -
-print-interpreter $i; done
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2
/lib64/ld-linux.so.2

$ gcc -m64 -Wl,--rpath=/home/myglibc64 -Wl,--dynamic-linker=/home/myglibc64/ld-linux.so.2 -o fastlisp
fastlisp.o cflp_udf.o -lm -lpthread
$ gcc -m64 -Wl,--rpath=/home/myglibc64 -Wl,--dynamic-linker=/home/myglibc64/ld-linux.so.2 -o BMDFMldr
BMDFMldr.o cflp_udf.o -lm -lpthread
$ gcc -m64 -Wl,--rpath=/home/myglibc64 -Wl,--dynamic-linker=/home/myglibc64/ld-linux.so.2 -o BMDFMsrv
BMDFMsrv.o cflp_udf.o -lm -lpthread
$ gcc -m64 -Wl,--rpath=/home/myglibc64 -Wl,--dynamic-linker=/home/myglibc64/ld-linux.so.2 -o CPUPROC
CPUPROC.o cflp_udf.o -lm -lpthread

$ patchelf --set-rpath /home/myglibc64 --set-interpreter /home/myglibc64/ld-linux.so.2 PROCstat
$ patchelf --set-rpath /home/myglibc64 --set-interpreter /home/myglibc64/ld-linux.so.2 IORBPROC
$ patchelf --set-rpath /home/myglibc64 --set-interpreter /home/myglibc64/ld-linux.so.2 OQPROC
$ patchelf --set-rpath /home/myglibc64 --set-interpreter /home/myglibc64/ld-linux.so.2 BMDFMtrc
$ patchelf --set-rpath /home/myglibc64 --set-interpreter /home/myglibc64/ld-linux.so.2 freeIPC

$ for i in fastlisp BMDFMsrv PROCstat IORBPROC OQPROC CPUPROC BMDFMldr BMDFMtrc freeIPC; do patchelf -
-print-interpreter $i; done
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
/home/myglibc64/ld-linux.so.2
$ _

Switching BMDFM to pull libraries from another location

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 31 of 38 =

31. Why does it seem like BMDFM keyboard input is delayed on Linux Alpha-based machines?

Linux for Alpha-processor-based machines preserves some compatibility with OSF/1. Keyboard input is buffered to hold
keystrokes in a buffer before they are processed. The buffer size can be seen by attaching strace to BMDFMsrv when the
BMDFM server waits for the keyboard input from the BMDFM server console:

Terminal on Alpha server
$ strace -v -s 1000 -p <PID_of_BMDFMsrv>
. . .

ioctl(3, TCGETA, {c_iflags=0x4300, c_oflags=0x3, c_cflags=0xb0f, c_lflags=0x5cf,
 c_line=0, c_cc="\x03\x1c\x7f\x15\x04\x00\x00\x00"}) = 0
ioctl(3, TCSETAW, {c_iflags=0x4300, c_oflags=0xc03, c_cflags=0xb0f, c_lflags=0x4
c1, c_line=0, c_cc[_VMIN]=4, c_cc[_VTIME]=0, c_cc="\x03\x1c\x7f\x15\x04\x00\x00\
x00"}) = 0
select(8, [3 5 7], NULL, NULL, NULL) = 1 (in [3])
read(3, "a", 1) = 1
ioctl(3, TCSETAW, {c_iflags=0x4300, c_oflags=0x3, c_cflags=0xb0f, c_lflags=0x5cf
, c_line=0, c_cc="\x03\x1c\x7f\x15\x04\x00\x00\x00"}) = 0

. . .

ioctl(3, TCGETA, {c_iflags=0x4300, c_oflags=0x3, c_cflags=0xb0f, c_lflags=0x5cf,
 c_line=0, c_cc="\x03\x1c\x7f\x15\x04\x00\x00\x00"}) = 0
ioctl(3, TCSETAW, {c_iflags=0x4300, c_oflags=0xc03, c_cflags=0xb0f, c_lflags=0x4
c1, c_line=0, c_cc[_VMIN]=4, c_cc[_VTIME]=0, c_cc="\x03\x1c\x7f\x15\x04\x00\x00\
x00"}) = 0
select(8, [3 5 7], NULL, NULL, NULL

. . .
$ _

Terminal

Similar information can be obtained by stty running in terminal where the BMDFM server is executed:

Terminal on Alpha server
$ stty -a -F /dev/tty
speed 38400 baud; rows 24; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; discard = ^U; min = 4; time = 0;
-parenb -parodd -cmspar cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke -flusho
$ _

Terminal

Changing the keyboard buffer size to 1 fixes the problem (note that the keyboard buffer size has to be set to 1 separately for
each terminal where BMDFM is used):

Terminal on Alpha server
$ stty -icanon min 1 -F /dev/tty

$ stty -a -F /dev/tty
speed 38400 baud; rows 24; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; discard = ^U; min = 1; time = 0;
-parenb -parodd -cmspar cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke -flusho
$ _

Terminal

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 32 of 38 =

32. How do you add “NUMA-awareness” to BMDFM?

Non-Uniform Memory Access (NUMA) design divides memory into multiple memory nodes, which are local to one or
more CPUs. The local memory node can be accessed faster than the other memory nodes. From this perspective, a NUMA
system can be viewed as a set of SMP systems: each NUMA node acts as an SMP system. NUMA nodes are connected via
some sort of system interconnect. A crossbar or point-to-point link are the most common types of such interconnects. Modern
servers with multiple CPU sockets usually have NUMA architecture. NUMA configuration can be displayed by numactl:

Terminal (Sun X4600M2 8x[Opteron/4cores]; Linux) Terminal (IBM S822LC 2x[POWER8/10cores/SMT8]; Linux)
$ numactl --hardware
available: 8 nodes (0-7)
node 0 cpus: 0 1 2 3
node 0 size: 32254 MB
node 0 free: 32184 MB
node 1 cpus: 4 5 6 7
node 1 size: 32244 MB
node 1 free: 32174 MB
node 2 cpus: 8 9 10 11
node 2 size: 32255 MB
node 2 free: 32171 MB
node 3 cpus: 12 13 14 15
node 3 size: 32255 MB
node 3 free: 32144 MB
node 4 cpus: 16 17 18 19
node 4 size: 32255 MB
node 4 free: 32117 MB
node 5 cpus: 20 21 22 23
node 5 size: 32255 MB
node 5 free: 32130 MB
node 6 cpus: 24 25 26 27
node 6 size: 32255 MB
node 6 free: 32129 MB
node 7 cpus: 28 29 30 31
node 7 size: 32255 MB
node 7 free: 32184 MB
node distances:
node 0 1 2 3 4 5 6 7
 0: 10 12 12 14 14 14 14 16
 1: 12 10 14 12 14 14 12 14
 2: 12 14 10 14 12 12 14 14
 3: 14 12 14 10 12 12 14 14
 4: 14 14 12 12 10 14 12 14
 5: 14 14 12 12 14 10 14 12
 6: 14 12 14 14 12 14 10 12
 7: 16 14 14 14 14 12 12 10
$ _

$ numactl --hardware
available: 2 nodes (0,1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
node 0 size: 262144 MB
node 0 free: 253490 MB
node 1 cpus: 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
149 150 151 152 153 154 155 156 157 158 159
node 1 size: 262144 MB
node 1 free: 259213 MB
node distances:
node 0 1
 0: 10 40
 1: 40 10
$ _

Terminals

Node distance matrices of these machines show that the neighbor memory node can be accessed up to 1.2 - 1.6 times slower
than the local memory node for Sun X4600M2 and up to 4 times slower than the local memory node for IBM S822LC.

The standard libnuma library provides NUMA interface that allows one to build required NUMA policy depending on
application business logic. The simplest NUMA policy for BMDFM that makes sense would be to manage process affinity in
such a way that each CPUPROC process or thread runs on a dedicated NUMA node performing memory allocation locally on
this node for the fastest local memory access on this node:

C code for “NUMA-awareness” added to cflp_udf.c
/* cflp_udf.c */
// . . .
#include <numa.h> /* include NUMA interface (link CPUPROC against libnuma library: -lnuma) */
// . . .
int NUMA_Nodes=1; /* number of configured NUMA nodes */
// . . .

void startup_callback(void){
 // . . .
 if(am_I_in_the_CPUPROC_module()){
 if(numa_available()==-1) /* check whether NUMA functionality is available */
 fprintf(stderr, "startup_callback(): WARN: NUMA functionality is not available!\n");
 else{
 NUMA_Nodes=numa_num_configured_nodes(); /* number of configured NUMA nodes */
 if(NUMA_Nodes<1){
 fprintf(stderr, "startup_callback(): WARN: no configured NUMA nodes!\n");
 NUMA_Nodes=1;
 }
 fprintf(stderr, "startup_callback(): INFO: number of configured NUMA nodes: %d.\n", NUMA_Nodes);
 if(numa_run_on_node(get_id_cpuproc()%NUMA_Nodes)==-1) /* run process or thread on NUMA node */
 fprintf(stderr, "startup_callback(): WARN: numa_run_on_node() failed! %d\n", errno);
 else{
 numa_set_localalloc(); /* allocate memory on local node */
 fprintf(stderr, "startup_callback(): INFO: CPUPROC proc/thread %ld runs on NUMA node %ld.\n",
 get_id_cpuproc(), get_id_cpuproc()%NUMA_Nodes);
 }
 }
 // . . .
 }
 // . . .
 return;
}

The simplest NUMA policy for BMDFM: run each CPUPROC process or thread
on a dedicated NUMA node with local memory allocation

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 33 of 38 =

33. How do you resolve lcc linkage issues on e2k Linux?

Support for generic e2k architecture might be deprecated in some lcc compiler versions. This leads to linkage issues for
older generic e2k object files as shown in the examples below:

Terminal (MCST Elbrus VLIW; Linux)
MCSTelbrus_Linux_32$ lcc -v
lcc:1.24.11:May-26-2020:e2k-v4-linux
Thread model: posix
gcc version 7.3.0 compatible.

MCSTelbrus_Linux_32$ make
lcc -mptr32 -pthread -O4 -Ofast -fPIC -c cflp_udf.c
lcc -mptr32 -pthread -o fastlisp fastlisp.o cflp_udf.o -lm -lpthread
/usr/bin/ld: fastlisp.o: link of `generic' input files is no longer supported
/usr/bin/ld: failed to merge target specific data of file fastlisp.o
make: *** [Makefile:19: fastlisp] Error 1

MCSTelbrus_Linux_32$ cd ../MCSTelbrus_Linux_64

MCSTelbrus_Linux_64$ make
lcc -mptr64 -pthread -O4 -Ofast -fPIC -c cflp_udf.c
lcc -mptr64 -pthread -o fastlisp fastlisp.o cflp_udf.o -lm -lpthread
/usr/bin/ld: fastlisp.o: link of `generic' input files is no longer supported
/usr/bin/ld: failed to merge target specific data of file fastlisp.o
make: *** [Makefile:19: fastlisp] Error 1

MCSTelbrus_Linux_64$ _

Examples of linkage issues on e2k Linux

A workaround solution would be to replace Flags value "0x0, generic" with "0x2000000, elbrus-v2" in ELF-headers of all
BMDFM object files (or to use BMDFM binaries including object files that are built with a newer version of lcc compiler if
those are available in your BMDFM distribution package):

Terminal (MCST Elbrus VLIW; Linux 32-bit) Terminal (MCST Elbrus VLIW; Linux 64-bit)
MCSTelbrus_Linux_32$ readelf -h fastlisp.o
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: REL (Relocatable file)
 Machine: MCST Elbrus general purpose
 hardware architecture
 Version: 0x1
 Entry point address: 0x0
 Start of program headers: 0 (bytes into file)
 Start of section headers: 772960 (bytes into file)
 Flags: 0x0, generic, default ipd
 Size of this header: 52 (bytes)
 Size of program headers: 0 (bytes)
 Number of program headers: 0
 Size of section headers: 40 (bytes)
 Number of section headers: 14
 Section header string table index: 11

MCSTelbrus_Linux_32$ cat elf32.c
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>

int main(int argc, char* argv[]){
 int f_descr;
 if(argc!=2){
 fprintf(stderr,"Usage: %s <ELF_binary_file>\n",argv[0]);
 exit(-1);
 }
 f_descr=open(argv[1],O_RDWR);
 if(f_descr==-1){
 fprintf(stderr,"Cannot open file %s\n",argv[1]);
 exit(-1);
 }
 Elf32_Ehdr header;
 read(f_descr,(void*)&header,sizeof(Elf32_Ehdr));
 header.e_flags=0x2000000;
 lseek(f_descr,0,SEEK_SET);
 write(f_descr,(void*)&header,sizeof(Elf32_Ehdr));
 close(f_descr);
 return 0;
}

MCSTelbrus_Linux_32$ lcc -mptr32 -o elf32 elf32.c

MCSTelbrus_Linux_32$ ls *.o | xargs ./elf32

MCSTelbrus_Linux_32$ readelf -h fastlisp.o | grep Flags

 Flags: 0x2000000, elbrus-v2, default ipd

MCSTelbrus_Linux_32$ make clean; make
rm -f cflp_udf.o fastlisp BMDFMldr BMDFMsrv CPUPROC 2>/dev/null
lcc -mptr32 -pthread -O4 -Ofast -fPIC -c cflp_udf.c
lcc -mptr32 -pthread -o fastlisp fastlisp.o cflp_udf.o -lm -lpthread
lcc -mptr32 -pthread -o BMDFMldr BMDFMldr.o cflp_udf.o -lm -lpthread
lcc -mptr32 -pthread -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread
lcc -mptr32 -pthread -o CPUPROC CPUPROC.o cflp_udf.o -lm -lpthread

MCSTelbrus_Linux_32$ _

MCSTelbrus_Linux_64$ readelf -h fastlisp.o
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: REL (Relocatable file)
 Machine: MCST Elbrus general purpose
 hardware architecture
 Version: 0x1
 Entry point address: 0x0
 Start of program headers: 0 (bytes into file)
 Start of section headers: 864312 (bytes into file)
 Flags: 0x0, generic, default ipd
 Size of this header: 64 (bytes)
 Size of program headers: 0 (bytes)
 Number of program headers: 0
 Size of section headers: 64 (bytes)
 Number of section headers: 14
 Section header string table index: 11

MCSTelbrus_Linux_64$ cat elf64.c
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>

int main(int argc, char* argv[]){
 int f_descr;
 if(argc!=2){
 fprintf(stderr,"Usage: %s <ELF_binary_file>\n",argv[0]);
 exit(-1);
 }
 f_descr=open(argv[1],O_RDWR);
 if(f_descr==-1){
 fprintf(stderr,"Cannot open file %s\n",argv[1]);
 exit(-1);
 }
 Elf64_Ehdr header;
 read(f_descr,(void*)&header,sizeof(Elf64_Ehdr));
 header.e_flags=0x2000000;
 lseek(f_descr,0,SEEK_SET);
 write(f_descr,(void*)&header,sizeof(Elf64_Ehdr));
 close(f_descr);
 return 0;
}

MCSTelbrus_Linux_64$ lcc -mptr64 -o elf64 elf64.c

MCSTelbrus_Linux_64$ ls *.o | xargs ./elf64

MCSTelbrus_Linux_64$ readelf -h fastlisp.o | grep Flags

 Flags: 0x2000000, elbrus-v2, default ipd

MCSTelbrus_Linux_64$ make clean; make
rm -f cflp_udf.o fastlisp BMDFMldr BMDFMsrv CPUPROC 2>/dev/null
lcc -mptr64 -pthread -O4 -Ofast -fPIC -c cflp_udf.c
lcc -mptr64 -pthread -o fastlisp fastlisp.o cflp_udf.o -lm -lpthread
lcc -mptr64 -pthread -o BMDFMldr BMDFMldr.o cflp_udf.o -lm -lpthread
lcc -mptr64 -pthread -o BMDFMsrv BMDFMsrv.o cflp_udf.o -lm -lpthread
lcc -mptr64 -pthread -o CPUPROC CPUPROC.o cflp_udf.o -lm -lpthread

MCSTelbrus_Linux_64$ _

Workaround solution to modify ELF-headers of BMDFM object files

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 34 of 38 =

34. How do you overwrite internal functions of BMDFM with your own functions?

Suppose you would like to replace one of the existing internal functions in BMDFM, then you can write your own functions
with the same names and force linker to use your replacement by calling the linker with the -Wl,--allow-multiple-definition
option.

Let us take an example where existing upper() and lower() functions are replaced with our own private implementation,
which considers UTF8 character encoding. We convert strings to wide character strings, change the converted wide strings to
upper or lower case and then convert them back to UTF8 strings:

Example of private replacement for upper() and lower() functions (C code)
#include "cflp_udf.h"
#include <locale.h>
#include <wchar.h>
#include <wctype.h> /* for towupper() and towlower() */

#define WCR wchar_t

/* Helper to allocate memory for wide string */
WCR *wmk_fst_buff(WCR **buff, ULO size){
 mk_fst_buff((CHR**)buff,(size+1)*sizeof(WCR));
 *(*buff+size)=(WCR)0;
 return *buff;
}
/* Helper to free memory for allocated string */
WCR *wfree_string(WCR **targ){
 return (WCR*)free_string((CHR**)targ);
}
/* Helper to calculate length of wide string */
ULO wlen(const WCR *string){
 return len((CHR*)string)<sizeof(WCR)?0:len((CHR*)string)/
 sizeof(WCR)-1;
}
/* Helper to copy wide string */
WCR *wequ(WCR **targ, const WCR *source){
 ULO l;
 if(*targ!=source){
 l=wlen(source);
 wmk_fst_buff(targ,l);
 memcpy((void*)*targ,(void*)source,l*sizeof(WCR));
 }
 return *targ;
}
/* Helper to concatenate wide strings */
WCR *wcat(WCR **targ, const WCR *source){
 ULO l0=wlen(*targ),l1=wlen(source);
 WCR *temp=NULL;
 wmk_fst_buff(&temp,l0+l1);
 memcpy((void*)temp,(void*)*targ,l0*sizeof(WCR));
 memcpy((void*)(temp+l0),(void*)source,l1*sizeof(WCR));
 wfree_string(targ);
 return (*targ=temp);
}
/* Helpers to convert from UTF8 to wide string
 (zero characters are allowed) */
WCR *wfromstr_(WCR **targ, const CHR *source){
 SLO l;
 if((l=(SLO)mbstowcs(NULL,source,0))<0)
 wfree_string(targ);
 else{
 wmk_fst_buff(targ,l);
 if(l&&((SLO)mbstowcs(*targ,source,l+1)<0))
 wfree_string(targ);
 }
 return *targ;
}
WCR *wfromstr(WCR **targ, const CHR *source){
 SLO i,l=len(source);
 WCR *target=NULL,*wchr_nul=NULL,*temp=NULL;
 wmk_fst_buff(&target,0);
 wmk_fst_buff(&wchr_nul,1);
 *wchr_nul=(WCR)0;
 for(i=0;i<l;i++){
 if(wfromstr_(&temp,source+i)==NULL){
 wfree_string(&target);
 break;
 }
 wcat(&target,temp);
 while(*(source+i))
 i++;
 if(i<l)
 wcat(&target,wchr_nul);
 }
 wfree_string(&wchr_nul);
 wfree_string(&temp);
 wfree_string(targ);
 return (*targ=target);
}

/* Helpers to convert from wide string to UTF8
 (zero characters are allowed) */
CHR *wtostr_(CHR **targ, const WCR *source){
 SLO l;
 if((l=(SLO)wcstombs(NULL,source,0))<0)
 free_string(targ);
 else{
 mk_fst_buff(targ,l);
 if(l&&((SLO)wcstombs(*targ,source,l+1)<0))
 free_string(targ);
 }
 return *targ;
}
CHR *wtostr(CHR **targ, const WCR *source){
 SLO i,l=wlen(source);
 CHR *target=NULL,*chr_nul=NULL,*temp=NULL;
 mk_fst_buff(&target,0);
 sch2str(&chr_nul,0);
 for(i=0;i<l;i++){
 if(wtostr_(&temp,source+i)==NULL){
 free_string(&target);
 break;
 }
 cat(&target,temp);
 while(*(source+i))
 i++;
 if(i<l)
 cat(&target,chr_nul);
 }
 free_string(&chr_nul);
 free_string(&temp);
 free_string(targ);
 return (*targ=target);
}
/* Helper to bring wide string to upper case */
WCR *wupper(WCR **targ, const WCR *source){
 ULO i,l;
 l=wlen(wequ(targ,source));
 for(i=0;i<l;i++)
 *(*targ+i)=(WCR)towupper((wint_t)*(*targ+i));
 return *targ;
}
/* Helper to bring wide string to lower case */
WCR *wlower(WCR **targ, const WCR *source){
 ULO i,l;
 l=wlen(wequ(targ,source));
 for(i=0;i<l;i++)
 *(*targ+i)=(WCR)towlower((wint_t)*(*targ+i));
 return *targ;
}

/* Replacement for upper() */
CHR *upper(CHR **targ, const CHR *source){
 WCR *target=NULL;
 wupper(&target,wfromstr(&target,source));
 wtostr(targ,target);
 wfree_string(&target);
 return *targ;
}

/* Replacement for lower() */
CHR *lower(CHR **targ, const CHR *source){
 WCR *target=NULL;
 wlower(&target,wfromstr(&target,source));
 wtostr(targ,target);
 wfree_string(&target);
 return *targ;
}

/* Code has to be added to cflp_udf C-interface */
extern int _Main_(int argc, char *argv[]);

int main(int argc, char *argv[]){
 setlocale(LC_CTYPE,"");
 return _Main_(argc,argv);
}

Example of private replacement for upper() and lower() functions added to the cflp_udf.o module

In order to use implemented functionality, we have to rebuild BMDFM with -Wl,--allow-multiple-definition linker option
placing the cflp_udf.o module as the first module in the command line:

Terminal
$ gcc -m64 -pthread -O3 -fPIC -c cflp_udf.c
$ gcc -m64 -pthread -Wl,--allow-multiple-definition cflp_udf.o fastlisp.o -o fastlisp -lm -lpthread
$ gcc -m64 -pthread -Wl,--allow-multiple-definition cflp_udf.o BMDFMldr.o -o BMDFMldr -lm -lpthread
$ gcc -m64 -pthread -Wl,--allow-multiple-definition cflp_udf.o BMDFMsrv.o -o BMDFMsrv -lm -lpthread
$ gcc -m64 -pthread -Wl,--allow-multiple-definition cflp_udf.o CPUPROC.o -o CPUPROC -lm -lpthread
$ _

Rebuilding BMDFM with -Wl,--allow-multiple-definition linker option

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 35 of 38 =

35. How do you change internal operation set of VM language?

BMDFM provides additional interface (Internal ISA COP Interface) for direct access to the internal operation set of VM
language. This interface allows one to change names of the internal operations (ISA COP Mnemonics), add new operations or
delete existing operations with the purpose of creating specific operation sets (even in multiple national languages) or writing
plug-ins to load different operation sets at runtime:

Internal ISA COP Interface functions Function descriptions
#define CHR char
#define UCH unsigned char

void _internal_ISA_COP_mnemonics_get(CHR **lst);
void _internal_ISA_COP_mnemonics_set(const CHR *list);

_internal_ISA_COP_mnemonics_get() retrieves current ISA COP Mnemonics from
VM and _internal_ISA_COP_mnemonics_set() loads specified ISA COP Mnemonics
to VM as a list of space-separated position-dependent mnemonic names, e.g:

 - PROGN SETQ ... RISE_ERROR_INFO MAPCAR

void _internal_ISA_COPs_get(CHR **tab);
void _internal_ISA_COPs_set(const CHR *table);

_internal_ISA_COPs_get() retrieves current ISA COP data from VM and
_internal_ISA_COPs_set() loads specified ISA COP data to VM as a list of
position-independent data blocks including <name>, <number of arguments>,
<return type>, <argument types> and <function addresses>, e.g:

 - (PROGN -1 U "-" 4208000 0 0 0 0)(SETQ 2 U "VU" 4273008 4272832 4272656
 4272480 4272304) ... (RISE_ERROR_INFO 2 U "IS" 4311552 4254800 0 0 0)
 (MAPCAR 1 U "-" 4387184 0 0 0 0)

void _internal_ISAext_COPs_get(CHR **tab);
void _internal_ISAext_COPs_set(const CHR *table);

_internal_ISAext_COPs_get() retrieves current ISA extension COP data from
VM and _internal_ISAext_COPs_set() loads specified ISA extension COP data
to VM as a list of position-independent data blocks including similar
information as for _internal_ISA_COPs_get() and _internal_ISA_COPs_set().

UCH _internal_ISA_COP_mnemonics_vars_ASCIIorUTF8_get(void);
void _internal_ISA_COP_mnemonics_vars_ASCIIorUTF8_set(
 UCH ASCIIorUTF8);

_internal_ISA_COP_mnemonics_vars_ASCIIorUTF8_get() reads and
_internal_ISA_COP_mnemonics_vars_ASCIIorUTF8_set() updates a flag that
enables/disables using UTF8 charecter set for mnemonic names and variable
names.

Description of the Internal ISA COP Interface

In the following example, we add few new mnemonic definitions: "SECTION" (duplicate of "PROGN"), "REMARKS"
(duplicate of "COMMENTS") and "PRINTF" (duplicate of "OUTF"). Then we create a new function idoubled, which we
add to the ISA COP set under mnemonic name "IDOUBLED" and to the ISA extension COP set under mnemonic name
"IDOUBLED_EXT":

Example of changing internal operation set of VM language (C code)
#include "cflp_udf.h"

/* Internal ISA COP Interface declarations */
extern void _internal_ISA_COP_mnemonics_get(CHR **lst);
extern void _internal_ISA_COP_mnemonics_set(const CHR *list);
extern void _internal_ISA_COPs_get(CHR **tab);
extern void _internal_ISA_COPs_set(const CHR *table);
extern void _internal_ISAext_COPs_get(CHR **tab);
extern void _internal_ISAext_COPs_set(const CHR *table);

/* Definition of a new function IDOUBLED */
void func__idoubled(const ULO *dat_ptr,
 struct fastlisp_data *ret_dat){
 ret_ival(dat_ptr,&ret_dat->value.ival);
 if(noterror()){
 ret_dat->single=1;
 ret_dat->type='I';
 ret_dat->value.ival*=2;
 }
 return;
}
void func__idoubled_j((const ULO *dat_ptr,
 struct fastlisp_data *ret_dat){
 ret_dat->disable_ptr=1;
 dat_ptr=*((ULO**)dat_ptr);
 (*(fcall)*dat_ptr)(dat_ptr+1,ret_dat);
 if(noterror())
 ret_dat->value.ival*=2;
 return;
}

/* Code has to be added to cflp_udf C-interface */
int main(int argc, char *argv[]){
 CHR buff[200],*ISA_mnemonics=NULL,
 *temp=NULL,*temp1=NULL,*temp2=NULL,*temp3=NULL,
 table[]={
 " PROGN SECTION" /* Replacement for the standard */
 " COMMENTS REMARKS" /* mnemonic names */
 " OUTF PRINTF"
 };

 /* Replace the standard mnemonic names defined in table */
 _internal_ISA_COP_mnemonics_get(&ISA_mnemonics);
 lcat(&ISA_mnemonics,space(&temp3,1));
 cat(&ISA_mnemonics,temp3);
 get_std_buff(&temp,(CHR*)&table);
 while(len(temp)){
 lsp_head(&temp1,temp);
 lsp_tail(&temp,temp);
 lcat(&temp1,temp3);
 cat(&temp1,temp3);
 lsp_head(&temp2,temp);
 lsp_tail(&temp,temp);
 lcat(&temp2,temp3);
 cat(&temp2,temp3);
 strtran(&ISA_mnemonics,ISA_mnemonics,temp1,temp2);
 }
 alltrim(&ISA_mnemonics,ISA_mnemonics);
 _internal_ISA_COP_mnemonics_set(ISA_mnemonics);

 /* If needed, the following code fragment keeps original
 mnemonics too. */
 _internal_ISA_COPs_get(&ISA_mnemonics);
 get_std_buff(&temp,(CHR*)&table);
 while(len(temp)){
 lsp_head(&temp1,temp);
 lsp_tail(&temp,temp);
 lcat(&temp1,get_std_buff(&temp3,"("));
 lsp_head(&temp2,temp);
 lsp_tail(&temp,temp);
 lcat(&temp2,temp3);
 cat(&temp1,space(&temp3,1));
 cat(&temp2,temp3);
 if(at(temp2,ISA_mnemonics))
 cat(&ISA_mnemonics,strtran(&temp3,lsp_head(&temp3,
 rightl(&temp3,ISA_mnemonics,at(temp2,ISA_mnemonics)-1)),
 temp2,temp1));
 }
 _internal_ISA_COPs_set(ISA_mnemonics);

 /* Add new function IDOUBLED to ISA COP set */
 _internal_ISA_COPs_get(&ISA_mnemonics);
 snprintf(buff,sizeof(buff),"(IDOUBLED 1 I \"I\" %ld %ld 0 0 0)",
 (SLO)&func__idoubled,(SLO)&func__idoubled_j);
 cat(&ISA_mnemonics,get_std_buff(&temp,buff));
 _internal_ISA_COPs_set(ISA_mnemonics);

 /* Add new function IDOUBLED_EXT to ISA extension COP set */
 _internal_ISAext_COPs_get(&ISA_mnemonics);
 snprintf(buff,sizeof(buff),"(IDOUBLED_EXT 1 I \"I\" %ld)",
 (SLO)&func__idoubled);
 cat(&ISA_mnemonics,get_std_buff(&temp,buff));
 _internal_ISAext_COPs_set(ISA_mnemonics);

 free_string(&ISA_mnemonics);
 free_string(&temp);
 free_string(&temp1);
 free_string(&temp2);
 free_string(&temp3);

 return _Main_(argc,argv);
}
/*
- Note that new functions added via the _internal_ISAext_COPs_set()
 interface call are considered by the BMDFM static scheduler as
 coarse-grain functions (similar to new functions added via
 definitions in the configuration profile or via C-interface).
- New functions added via the _internal_ISA_COPs_set() interface
 call are considered by the BMDFM static scheduler as fine-grain
 functions.
===== VM code: ==
 (setq var_int 2)
 (printf "(IDOUBLED_EXT 2) = %ld\n" (IDOUBLED_EXT var_int))
 (printf "(IDOUBLED 2) = %ld\n" (IDOUBLED var_int))
===== Statically scheduled VM code: ===============================
 (SETQ@I MAIN:VAR_INT@I 2)
 (SETQ@I MAIN:TMP__000000001 (IDOUBLED_EXT@J MAIN:VAR_INT@I))
 (SETQ@S MAIN:TMP__000000002@S
 (PRINTF "(IDOUBLED_EXT 2) = %ld\n" MAIN:TMP__000000001))
 (SETQ@S MAIN:TMP__000000001
 (PRINTF "(IDOUBLED 2) = %ld\n" (IDOUBLED@J MAIN:VAR_INT@I)))
*/

Example of changing internal operation set of VM language added to the cflp_udf.o module

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 36 of 38 =

36. How do you run BMDFM on IBM mainframe z/OS?

IBM z/OS assumes EBCDIC character set by default, thus, ASCII input/output and ASCII files will not be processed
correctly without additional conversion:

Terminal (S/390; z/OS)
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -q hello

Failed while opening file `hello'.
ProcName=BMDFMldr, PID=33554853, tID=33554853, Module=fastlisp, Function=read_from_file(), Locat
ion=28, SysCall=open(), errno=129 : EDC5129I No such file or directory. (errno2=0x05620062)

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -q hello.flp

[ErrCode=2] In function `Main': invalid numeric constant: {@▒▒▒▒▒K▒▒▒

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > _

BMDFM fails to process ASCII files on z/OS with no conversion by default

The issue can be easily solved. The following environment variables need to be set in order to force automatic conversion
from/to EBCDIC/ASCII on the fly. We might also need tagging all ASCII flp and cfg files:

Terminal (S/390; z/OS)
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > export _BPXK_AUTOCVT="ON"
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > export _CEE_RUNOPTS="FILETAG(AUTOCVT,AUTOTAG)"
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > export _TAG_REDIR_ERR="txt"
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > export _TAG_REDIR_IN="txt"
IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > export _TAG_REDIR_OUT="txt"

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > chtag -tvc IBM-1047 *.cfg *.flp

T=off 0 ? ----> T=on IBM-1047 E hello.flp
T=off 0 ? ----> T=on IBM-1047 E arch.flp

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -q hello.flp

Hello, world!

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > BMDFMldr -q arch.flp

Machine architecture: 64-bit Big-Endian.
Format of executable: z/OS Unix executable (amod64).

IBM-IRON : /people/u/IBMUSER/facilities/BMDFM : > _

BMDFM processes ASCII files correctly on z/OS with automatic conversion

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 37 of 38 =

37. Is there something in common between BMDFM and a multi-issue dynamic scheduling CPU?

Both are dataflow machines and have a lot of common internal architectural solutions. Understanding of the following
similarities helps us to use BMDFM more efficiently:

Multi-issue dynamic scheduling
processor

BMDFM

Hardware dataflow machine that uses
Tomasulo’s algorithm to exploit
instruction-level parallelism.

Software dataflow machine that uses the
Tagged-token principle to exploit thread-
level parallelism of virtual machine
instructions.

Dataflow is local within one processor chip.
Execution units are the processing elements
of the ALU and FPU.

Dataflow is global within multi-core SMP
machine. Execution units are the processors
and cores themselves.

Tomasulo’s approach defines the
reservation station as a unit that is used for
register renaming.

BMDFM defines contexted data structure
for each variable using nearly the same
principle.

To feed its own dataflow avoiding stalls, the
processor requires multiple flows of the
instruction fetch.

To feed the BMDFM dataflow engine
avoiding bottlenecks, the BMDFMldr
External Task Loader and Scheduler
sustains multiple flows of marshaled
clusters.

To fill dataflow resources more efficiently, a
concept of simultaneous multithreading is
used that naturally matches the register
renaming principles.

To fill dataflow resources more efficiently,
many BMDFMldr processes can connect to
the Task Connection Zone of BMDFM
simultaneously, which naturally matches the
contexted data principles.

To avoid stalls in the internal RISC-
pipelines, instruction prefetch and branch
prediction units are used.

Same ideas are used to avoid stalls: ready
VM-instructions are prefetched into the
CPUPROC pipelines; recurrence is
predicted to reduce scheduling effort for
tagging ready VM-instructions.

Predicated instructions are used to shift
conditional branches from the pipeline into
the logic of the instruction itself.

User-defined coarse-grain VM-instructions
are defined as seamless blocks to move
scheduling-expensive pieces of code into the
logic of such a VM-instruction itself.

Comparison table

BMDFM FAQ (“A Little Boy and His BMDFM”) http://bmdfm.com

= Page 38 of 38 =

38. How is the BMDFM Shared Memory Pool architected?

The BMDFM Shared Memory Pool is divided into banks. Each bank is protected by a semaphore. Data chunks are
allocated starting from lower addresses of the bank. A bank’s control structures are in the higher addresses. These control
structures are two Red-Black-Trees of descriptors (to be more precise, two Red-Black-Trees of RBT-nodes where external
nodes store the descriptors): one RBT with descriptors pointing to the allocated chunks of data, and the other RBT with
descriptors pointing to the holes of free space. Each RBT-node has a reserved field. Because all RBT-nodes are allocated
linearly, it makes it possible that all reserved fields comprise a Max-heap Priority Queue, which is used as storage for pointers
to unused RBT-nodes.

Thus, allocation and freeing of memory blocks basically invoke a sequence of insert/delete operations in two Red-Black-
Trees (O(log n)). Each RBT, in its own turn, uses the Max-heap Priority Queue to allocate its internal and external nodes (again
O(log n)). Max-heap guarantees that the root of the Priority Queue always points to an unused RBT-node with the highest
address. This address and such a node will be used first, ensuring a compact node allocation and making life of RBT node lazy
garbage collector much easier.

Shared Memory PoolShared Memory Pool Sync Sema4Sync Sema4Sync Sema4 Bank SelectorBank SelectorBank Selector

BankBank Sync Sema4Sync Sema4Sync Sema4BankBank Sync Sema4Sync Sema4Sync Sema4 BankBank Sync Sema4Sync Sema4Sync Sema4

BankBank

* Banks are thread-safe for parallel allocation
* Alloc() and free() invoke RBT insert/delete operation and Max-heap queuing for RBT nodes
* When free space exhausted, the RBT node lazy garbage collector is triggered or next bank is chosen

A
llo

ca
te

d
 D

at
a

C
h

u
n

k
A

llo
ca

te
d

 D
at

a
C

h
u

n
k

A
llo

ca
te

d
 D

at
a

C
h

u
n

k

F
re

e
S

p
ac

e
F

re
e

S
p

ac
e

F
re

e
S

p
ac

e

A
llo

ca
te

d
 D

at
a

C
h

u
n

k
A

llo
ca

te
d

 D
at

a
C

h
u

n
k

A
llo

ca
te

d
 D

at
a

C
h

u
n

k

H
ea

d
 o

f
R

B
T

co
n

tr
o

lli
n

g
 f

re
e

sp
ac

e
H

ea
d

 o
f

R
B

T
co

n
tr

o
lli

n
g

 f
re

e
sp

ac
e

H
ea

d
 o

f
R

B
T

 c
o

n
tr

o
lli

n
g

al
lo

ca
te

d
 d

at
a

ch
u

n
ks

H
ea

d
 o

f
R

B
T

 c
o

n
tr

o
lli

n
g

al
lo

ca
te

d
 d

at
a

ch
u

n
ks

R
B

T
 In

te
rn

al
 N

o
d

e
U

n
u

se
d

 d
es

cr
ip

to
r

R
B

T
 In

te
rn

al
 N

o
d

e
U

n
u

se
d

 d
es

cr
ip

to
r

R
B

T
 E

xt
er

n
al

 N
o

d
e

A
llo

ca
te

d
 d

es
cr

ip
to

r
R

B
T

 E
xt

er
n

al
 N

o
d

e
A

llo
ca

te
d

 d
es

cr
ip

to
r

U
n

u
se

d
 R

B
T

 N
o

d
e

U
n

u
se

d
 R

B
T

 N
o

d
e

R
B

T
 E

xt
er

n
al

 N
o

d
e

F
re

e
sp

ac
e

d
es

cr
ip

to
r

R
B

T
 E

xt
er

n
al

 N
o

d
e

F
re

e
sp

ac
e

d
es

cr
ip

to
r

U
n

u
se

d
 R

B
T

 N
o

d
e

U
n

u
se

d
 R

B
T

 N
o

d
e

Free
Space

Max-heap Priority Queue of Unused RBT Nodes

Allocated DataAllocated Data Red-Black Trees of descriptorsRed-Black Trees of descriptors

Addr HighAddr Low

Round-
Robin

The architecture of the Shared Memory Pool

The shmempool command of the BMDFM Server console displays current state of the Shared Memory Pool:

Output of shmempool

Console input: shmempool
[SysMsg]: ========== System time is Fri Nov 13 18:38:58 2015. ==========
[MemPool]: * STATUS OF THE SHARED MEMORY DRIVEN BY THE RE-ENTRANT CODE *
[MemPool]: Shared memory segment ID=294915.
[MemPool]: SHMEM_POOL_SIZE: 500000000Bytes (10 BANKS of 49999896 each).
[MemPool]: Shared memory segment has been attached at 0x000000003B9AC000.
[MemPool]: Shared memory segment permissions are: 0660=="rw-rw----".
[MemPool]: Using POSIX sema4 sync instead of SVR4 sema4 sync.
[MemPool]: Red-Black Tree (RBT) node size: 72Bytes.
[MemPool]: Number of reserved RBT-nodes: 13.
[MemPool]:<BANK#: Entities, FirstEntSpaceAfter, Free(Max), Fragmentation.>
[MemPool]: B#0: Ent=164, FA=163, Free=49613448(49613448), Frag=0.00%.
[MemPool]: B#1: Ent=164, FA=163, Free=49467496(49467496), Frag=0.00%.
[MemPool]: B#2: Ent=164, FA=163, Free=49567056(49567056), Frag=0.00%.
[MemPool]: B#3: Ent=164, FA=163, Free=49609376(49609376), Frag=0.00%.
[MemPool]: B#4: Ent=163, FA=162, Free=49527400(49527400), Frag=0.00%.
[MemPool]: B#5: Ent=163, FA=162, Free=49536488(49536488), Frag=0.00%.
[MemPool]: B#6: Ent=163, FA=162, Free=49607512(49607512), Frag=0.00%.
[MemPool]: B#7: Ent=163, FA=162, Free=49615568(49615568), Frag=0.00%.
[MemPool]: B#8: Ent=163, FA=162, Free=49614240(49614240), Frag=0.00%.
[MemPool]: B#9: Ent=163, FA=162, Free=49612000(49612000), Frag=0.00%.
[MemPool]: Memory Pool TOTAL:
[MemPool]: Number of allocated entities: 1634.
[MemPool]: Number of all/(LazyGarbageCollected) RBT-nodes: 3278/(3278).
[MemPool]: Allocated size: 3991640Bytes.
[MemPool]: Free space/(LargestFreeBlock): 495770584/(49615568)Bytes.
[MemPool]: Fragmentation of holes: 0.00%.
[MemPool]: Number of extra multicast references: 0.

Output of the shmempool command on the BMDFM Server console

<EOF>

