BMDFM

Comprehensive Manual

2025

http://bmdfm.com



This page is intentionally left blank.
Contents of the document begins on the next page.



Table of Contents

Table of Contents

About This M anual

AN LICENSE TEIMS ...t e et e e sre e s teeseeeneeennee e Vii

Chapter 1

LA o ¥ ToX (T o] o ISR 1

Chapter 2

ATCNITECTUr @l OVENVIBW ...ttt et e e enees 5
2.1 SEALIC SCHEAUIEN ......eoieeeceiieciee ettt e e reesnee s 6
2.2 DYNamicC SCREUIEN ..........ee e 7
pZ2C @00 1o [N = o] o PR 8
2.4 Top Screen of the RUNNING SYStEM ......c.cooviieeiie e 13

Chapter 3

INStallation @Nd USE........cccueiiiic ettt e e e nnre e 15
3.1 Structure of Modules On the DiSK.........cccviieeiiieiie e 15
3.2 Programming and Compilation...........cccccveieeiieenieesiesie e see e 17
3.3 Singlethreaded ENQINE........cccovoiiiiiiie e e 20
GRS Y= U L o [ S 22
S5 EXternal Task UNit......cccooceeiiiciie e s 25
3.6 EXternal TraCer UNIt........c.oooiiieiiie et s 27

Appendix A

Programming Language REfErencCe.........cccovvieevee i 29
N . oo =T o RSP PR 29
A.2 Constant defiNItiON..........ccveiiieiiece e 30
A BVATADIES.....ccceee et 31
A.4 Special construction FUNCLIONS..........cooieiiir i 33
A.5 INPUY/OULPUL FUNCLIONS.......eotieiie ettt 35
A.6 Built-in compariSon fUNCLIONS .........cccuviieiiieciecee e 37
A.7 Built-in boolean fuNCtioNS ... 38
A.8 BUilt-in INtEger FUNCLIONS........ccceeieeiiieee e 39
A9 BUIlt-IN float fTUNCHIONS.......cocviieiece e 42
A.10 BUilt-in String fUNCLIONS.........ccee et 45

BMDFM iii

2025 http://fbmdfm.com



Table of Contents

Table of Contents (cont.)

A.11 Built-in asynchronous memory heap functions..........c.ccccceeeveceeiieeseesnnenn, 50
A.12 BUilt-in mapcar FUNCLION.........cceeiieiie e 52
A.13 Built-in terminal capabilities fuNCLioNS...........cccceviiiee i 53
A.14 Built-in constant and info fUNCLIONS............cccverieiieeiie e 55
A.15 Built-in rise runtime error fUNCLIONS.........ccooceeiieeiiecie e 58
F N LN O 10 1= =0 TSR 59

Appendix B

Example of Application Programming........cccccceeeeeieenieesieeeseesieeses e see e 69

Appendix C

List of Target DeploymMeNnts.......ccoccveiiriii e 81

iv BMDFM

http://bmdfm.com 2025



List of Figures

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.

Figure B-1.

BMDFM
2025

List of Figures

Running BMDFM on different machines.........ccccoccecvevivccievin e, 3
BMDFM arChiteCture.........ccooiveiieiee et 5
Architecture of static scheduler ............cccovviveii i, 6
Architecture of dynamic scheduler ...........ccccvevvviieevin e 7
Configuration example for a 1024-way SMP machine..................... 12
BMDFM running on a4-way SMP machine..........ccccevevveeviieecinnnnns 13
BMDFM MOAUIES.......coeeeceee ettt 15
BMDFM dir€CtOry tre€ ....c.eeiveeeee e esiee et 16
BMDFM user application life cycle .......cocovveeiiiiieceece e 17
BMDFM user application StrUCtUIe.........cocoveieeeieeesee e esiee e e 18
Recompilation of the BMDFM MOdUIES ..........cccccvevieiiveiirciieeinnne 19
BMDFM singlethreaded engine command line syntax ................... 20
BMDFM singlethreaded engine Work flow ..........ccccocvviveiiecieenenns 21
BMDFM Server command [ine SyntaX .........ccccceveveeeveeiieesieesienenenn 22
BMDFM Server unit WOrk flow ........cccoociveiiie e 23
BMDFM Server CONSOIE VIEW ......cccvveiieeieeeiieieeesieesiieeniee e 24
External task unit command line syntax .........ccccceevveevveeieesieeennnne, 25
External task unit Work flow ..o 26
External tracer unit command line Syntax .........ccccceeevvveieeecieeennnnn 27
External tracer unit WOrk flOW ........cccovveiieniie i, 27
External tracer CONSOIE VIEW ........cceeevieeiiiee e 28
Computation example of discrete Hartley transforms...................... 69
\'
http://bmdfm.com



List of Figures

Vi

List of Figures (cont.)

http://bmdfm.com

BMDFM
2025



About This Manual
and License Terms

This manual gives an overview of the BMDFM software. The BMDFM
architecture, installation procedure and programming language are described.

A Use of the BMDFM softwar e is subject to licenserestrictions.
Important  Carefully read End User License Agreement (EULA) before
using this software.

If you do not agreeto thetermsand conditions specified in the
EULA, please destroy all your copies of the BMDFM software
from any drives, disks, tapes or other storage media and
recycle all related printoutsimmediately.

End User License Agreement (EULA)

1. The BMDFM Software is distributed to an end user ("End User") asa
binary code at no charge.

2. End User accepts a non-exclusive, non-transferable, royalty-free use of the
BMDFM Software for non-commercial purposes. Any commercial use
requires aseparate license. End User may build own applications and create
derivative works based on the BMDFM Software. End User has specific
rights to create additional copies of the BMDFM Software as necessary for
archival purposes and to modify the BMDFM Software as necessary to
allow it to operate on the End User's equipment. End User may not
reproduce and distribute the BMDFM Software.

BMDFM Vil
2025 http://bmdfm.com



About This Manual and License Terms

viii

. End User agreesto respect and not to remove, obliterate, or cancel from

view any copyright, trademark, confidentiality or other proprietary notice,
mark, or legend appearing on the BMDFM Software or output generated by
the BMDFM Software, and to reproduce and include same on each copy of
the BMDFM Software.

. End User agrees not to disassemble, decompile or reverse engineer the

BMDFM Software, or any portion thereof.

. End User further acknowledges that al copies of the BMDFM Softwarein

any provided form are the sole property of the BMDFM official suppliers.
End User shall not have any right, title, or interest to any such BMDFM
Software or copies thereof except as provided in this EULA, and further
shall secure and protect all BMDFM Software and documentation
consistent with maintenance of the BMDFM proprietary rights therein.

. The BMDFM Softwareis provided AS IS. End User agrees that the

BMDFM official suppliers shall not be liable for any costs, damages, fees,
or other liability, nor for any direct, indirect, special, incidental, or
consequential damages with respect to any clam by End User or any third
party on account of or arising from this EULA or use of (or inability to use)
any portion of the BMDFM Software.

. THE EXPRESS WARRANTY STATED IMMEDIATELY ABOVE IS

GIVEN IN LIEU OF ALL OTHER WARRANTIES, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

BMDFM
http://bmdfm.com 2025



Chapter 1
Introduction

What is BMDFM?

BMDFM (Binary Modular DataFlow Machine) is software, which enables
running an application in parallel on shared memory symmetric multiprocessors
(SMP) using the multiple processor cores to speed up the execution of single
applications.

BMDFM automatically identifies and exploits parallelism due to the static and
mainly DYNAMIC SCHEDULING of the data flow instruction sequences
derived from the formerly sequential program ensuring unigue parallel
correctness.

No directivesfor parallel execution arerequired!

No highly knowledgeable parallel programmersarerequired!

What does BMDFM provide to a user?

A user understands BMDFM as a virtual machine, which runs every statement of
an application program in parallel having all parallelization and synchronization
mechanisms fully transparent. The statements of an application program are
normal operators, which any singlethreaded program might consist of - they are
variable assignments, conditional executions, loops, function calls, etc. BMDFM
has arich set of standard operators/functions, which can be extended by user
functions written in C/C++.

In comparison with the recent general methodology of sequential code
parallelization, which is based on static analysis, BMDFM uses dynamic
scheduling to define and to run code fragmentsin parallel. It means that data
computed at run time will define further branches for parallel processing

BMDFM 1-1
2025 http://bmdfm.com



Introduction

(DataFlow principle). It also means that |oops of an application program will be
dynamically unrolled to process severd iterationsin parallel.

Which granularity of parallelism is used in BMDFM?

BMDFM exploitsfine-grain parallelism. All instructions of an application will be
processed in parallel. In addition, it is possible to exploit coarse-grain parallelism
that will decrease costs spent on dynamic scheduling. In order to achieve thisa
portion of C code can be defined as a user function, which will be treated by the
dynamic scheduler as one seamless instruction.

Which platforms may run BMDFM?

Every machine supporting ANSI C and POSI X/SVR4-IPC may run
BMDFM.

Obviously, BMDFM is able to accelerate the execution time of an application
only when installed on a multiprocessor computer implementing an SMP
paradigm (hardware mapping of distributed memory into virtual shared memory,
cache coherent non-uniform memory access ccNUMA, UMA!, etc.)

BMDFM is provided as compiled multi-threaded versions for:

® x86: Linux/32, FreeBSD/32, OpenBSD/32, NetBSD/32, MacOS/32,
Sun0S/32, UnixWare/32, Minix/32, Android/32, Win-Cygwin/32,
Win-UWIN/32, Win-SFU-SUA/32;

® Xx86-64: Linux/64, FreeBSD/64, OpenBSD/64, NetBSD/64, MacOS/64,
Sun0OS/64, Android/64, Win-Cygwin/64;

® VAX: Ultrix/32;

® Alpha Tru640SF1/64, Linux/64, FreeBSD/64, OpenBSD/64;

® |A-64 HP-UX/32, HP-UX/64, Linux/64, FreeBSD/64;

® XeonPhiMIC: Linux/64;

® MCST-Elbrus: Linux/32, Linux/64;

® PA-RISC: HP-UX/32, HP-UX/64, Linux/32;

® SPARC: Sun0S/32, SUnOS/64, Linux/32, Linux/64, FreeBSD/64,
OpenBSD/64;

® MIPS: IRIX/32, IRIX/64, Linux/32, Linux/64,

® MIPSd: Linux/32, Linux/64, Android/32, Android/64;

1-2 BMDFM

http://bmdfm.com 2025



Introduction

® PowerPC: Al X/32, Al X/64, MacOS/32, MacOS/64, Linux/32, Linux/64,
FreeBSD/32, FreeBSD/64;

® PowerPCle: Linux/32, Linux/64;

® S/390: zOS-USS/32, z0S-USS/64, Linux/32, Linux/64;

® M68000: Linux/32;

® ARM: Linux/32, Linux/64, FreeBSD/64, Android/32, Android/64,
MacOS/64;

® ARMbe: L inux/64;

® RISC-V: Linux/32, Linux/64;

® | oongArch: Linux/64;

and! alimited single-threaded version for:
® X86: Win/32.

A machine with one CPU can be used for development and test purposes only asit
IS not possible to get real acceleration on one CPU. But as soon the application
program has reached a certain state of maturity it can be moved to BMDFM
running on awide range of multicore/many-core computers (from tiny embedded
devices to multiprocessor big iron mainframes) as shown in Figure 1-1.

Workstation / PC Box SMP Mul_ticore Mainframe

Developing and Running BMDFM
testing an application in parallel batch mode

Figure 1-1. Running BMDFM on different machines

BMDFM Official Web Site: http://bmdfm.com

BMDFM Support: email to: bmdfm@bmdfm.de

1. Actual BMDFM installation factory package can provide additional compiled platform-specific versions.

BMDFM 1-3
2025 http://bmdfm.com



Introduction

1-4

This page is intentionally left blank.

http://bmdfm.com

BMDFM
2025



Chapter 2
Architectural Overview

BMDFM uses both highly efficient dynamic and static scheduling combining
SMP (Shared Memory Symmetric Multi Processing), MIMD (Multiple
Instruction Stream, Multiple Data Stream) and DFM (DataFlow Machine)
paradigms. The BMDFM architectureis shown in Figure 2-1.

Static Scheduler Part Dynamic Scheduler Part

Work Processes

Local Memory

&

(Instructions/Data)

Task Connection
Zone

External Task
Loader / Listener
Pair

1
1
1
1
1
:
: Multithreaded Engine
1
1
1
1
1
1
1
1

Socket

[

emory Pool

| Trace Plugging @
Area

External D . .
< :: Port ynamic Scheduling
Iracer " L;J Processes

eer]

Figure 2-1. BMDFM architecture

A pool of processesis divided into two subsets. Work Processes, which execute
paralel instruction streams, and Dynamic Scheduling Processes, which
automatically convert sequential instruction streams into parallel ones.
Running under an SMP OSthe processes will occupy all availablereal
machine processors.

BMDFM 2.5
2025 http://bmdfm.com



2.1 Static Scheduler Architectural Overview

All processes share the Shared Memory Pool containing Instructions and Data.
Each Work Process aso has its own Local Memory, which may contain user
subroutines to implement additional coarse-grain levels of parallelization. The
Externa Loader/Listener Pair performs preprocessing and static scheduling of the
Input program instructions and stores them clustered in the Task Connection
Zone. The Listener isresponsible for the ordered output after the out-of-order
processing in the Multithreaded Engine. Clustered instructions and data are
fetched by the Dynamic Scheduling Processes into the Shared Memory Pool.
Additionally, Dynamic Scheduling Processes rel ease (garbage collect) resources
after the data contexts and specul ative branches are processed. L astly, the External
Tracers assist in debugging of the multithreaded out-of-order processing of the
input program. The External Tracers are connected viathe Ports of the Trace
Plugging Area. The Tracer can operate in various modes of full/partial and
master/slave debugging.

2.1 Static Scheduler

Figure 2-2 shows the static scheduling part of BMDFM. An application program
(Input Sequential Program) is processed in three stages: preliminary code
reorgani zation (Code Reorganizer), static scheduling of the statements (Static
Scheduler) and compiling/loading (Compiler). The output after the static
scheduling stagesis aMultiple Clusters Flow that feeds the Multithreaded
Engine viathe Interface designed in away to avoid bottlenecks. For some special
cases, such as development of loaders, the Interface can be published. Multiple
Clusters Flow can be understood as a compiled input program split on the
marshaled clusters, in which all addresses are resolved and extended with context
information. Splitting on the marshaled clusters enables loading them multi-
threadedly. Context information lets iterations be processed in parallel.

Input | ! . Multiple | & _
:’> Code Static Compiler g Multithreaded
) Reorganizer | Scheduler P 9 Engine
Sequential : Clusters | £
Program ; Flow

Figure 2-2. Architecture of static scheduler

2-6 BMDFM
http://bmdfm.com 2025



Architectural Overview 2.2 Dynamic Scheduler

2.2 Dynamic Scheduler

Figure 2-3 shows the part of BMDFM responsible for the dynamic scheduling in
more detail. The BMDFM dynamic scheduling subsystem performs an efficient
SMP emulation of the Tagged-Token Dataflow M achine as described below.

Multithreaded Engine

Shared Memory Pool
DB
&
¢:> 0Q PROC ”<):
(Data) <
S IORBP U
- External 1 .
rask Loarler C—)| I0RBP PROC cpuproc (|(
- I Listener <):§ — . =)_k
L Pair (Instructions -
/ Data)

Figure 2-3. Architecture of dynamic scheduler

The Shared Memory Pool isdivided in three main parts: Input/Output Ring Buffer
Port (IORBP), Data Buffer (DB) and Operation Queue (OQ).

The external static scheduler (External Task Loader/Listener Pair) puts clustered
instructions and data of an input program into the IORBP. The ring buffer service
processes (IORBP PROC) move data into the DB and instructions into the OQ.
The operation queue service processes (OQ PROC) tag the instructions as ready
for execution if the required operands' datais accessible. The execution processes
(CPU PROC) execute instructions, which are tagged as ready and output
computed datainto the DB or to the IORBP. Additionally, IORBP PROC and OQ
PROC are responsible for freeing memory after contexts have been processed.
The context is a specia unique identifier representing a copy of data within

BMDFM 2.7
2025 http://bmdfm.com



2.3 Configuration Architectural Overview

different iteration bodies. This allows the dynamic scheduler to handle several
iterationsin parallel.

In order to allow several processes accessing the same data concurrently,
BMDFM locks objects in the Shared Memory Pool via POSIX/SV R4 semaphore
operations. Locking policy provides multiple read-only access and exclusive
access for modification.

2.3 Configuration

A_ Please, ensur e suitable amount of SVR4 | PC resour ces when
Caution  running BMDFM (notethat BMDFM can be configured with
POSI X/SVR4-1PC-synchronization).

Example for SUnOS:

/etc/system

set shmsys:shminfo shmmax=2147483647
set semsys:seminfo semmni=128

set semsys:seminfo semmsl=256

set semsys:seminfo semmns=32768

Configuration parameters are gathered in the BMDFM configuration profile. The
configuration parameters are explained below:

SHMEM_ POOL _SIZE defines maximal shared memory pool size. Greater
values ensure that BMDFM will operate for larger amounts of data. Note that
2147483647 (2GB) shmmax vaueis normally alimit for 32-bit mode. Running
64-bit BMDFM allows one to configure more shared memory space.

SHMEM_ POOL_MNTADDR defines explicit mount address of the shared
memory pool. By default, the mount addressis chosen by the BMDFM Server and
the OS automatically.

2-8 BMDFM
http://bmdfm.com 2025



Architectural Overview 2.3 Configuration

SHMEM_ POOL_PERM S defines permissions of the shared memory pool ina
form of traditional Unix-like POSIX-compliant system permissions (e.g. decimal
432 is equal to octal 0660 and means "rw-rw----").

SHMEM _POOL_BANKS defines the number of banks in shared memory pool.
Severa banks together work faster than one, however, the memory bank restricts
maximal memory block size that can be allocated.

POSIX_SEMA4 SYNC defines whether POSI X semaphores should be used (if
switched on) instead of SVR4 semaphores.

ARRAYBLOCK _SIZE definesthe policy of the memory allocation. Memory is
alocated in chunks. Greater values cause less intensive and faster memory
alocation, however at the same time, less efficient memory usage.

OQ_FUNC_ARG_COUNT defines the default number of function arguments
statically allocated in OQ. In case where the actual number of arguments exceeds,
they will be allocated dynamically.

Q_0OQ defines OQ size. Greater values alow one running tasks with more
complex data dependencies, however, alarger OQ requires additional memory
space, more semaphores and can slow down associative searches in the dynamic
scheduling subsystem.

Q_DB defines DB size. Greater vaues allow one running tasks with more
variables, however, alarger DB requires additional memory space and more
semaphores.

Q_IORBP defines IORBP size. Greater values allow one more intensive loading
of datavia Task Connection Zone, however, alarger IORBP requires additional
memory space and more semaphores.

N_IORBP defines the number of IORBPs, thus the number of tasks, which can be
processed in parallel. Processing several tasks simultaneously uses system
resources more efficiently.

N_TRACEPORT defines how many tracers can be attached at the same time.
Greater values allow one to have more tracers working in separate windows
displaying different resources.

BMDFM 2.9
2025 http://bmdfm.com



2.3 Configuration Architectural Overview

N_CPUPROC defines the number of CPUPROC processes. Usually, it makes
sense to set this value equal or doubled to the number of system logical processors
(processors * cores * threads per_core). An additional tuning can be done after
anaysisof STALL WARNINGS in the generated log files.

N_OQPROC definesthe number of OQPROC processes. Usually, it makes sense
to set this value equal or doubled to the number of system logical processors
(processors * cores * threads per_core). An additional tuning can be done after
analysisof STALL WARNINGS in the generated log files.

N_IORBPPROC definesthe number of IORBPROC processes. Usually, it makes
sense to set this value equal or doubled to the number of system logical processors
(processors * cores * threads per_core). An additional tuning can be done after
anaysisof STALL WARNINGS in the generated log files.

CPUPROC_MTHREAD specifies multithreading model (if switched on) or
multi-process model (if switched off) for the CPUPROC processes.

OQPROC_MTHREAD specifies multithreading model (if switched on) or
multi-process model (if switched off) for the OQPROC processes.

IORBPPROC_MTHREAD specifies multithreading model (if switched on) or
multi-process model (if switched off) for the IORBPROC processes.

BMDFMLDR_MTHREAD specifies multithreading model (if switched on) or
multi-process model (if switched off) for the BMDFMIdr static scheduler
processes.

MTHREAD_TLS CHECK switches verification for Thread-Local Storage
(TLS) on/off. The verification is done at startup.

ALLOW_CPUPROC_ASLR alows CPUPROC processesto use Address Space
Layout Randomization (ASLR) provided by the OS (if switched on).

T _STATISTIC definestime interval between attempts of collecting statistics.
L ess values make the statistics more precise but increase costs for this.

CONSOLE_OUT_UTF8 adjusts console output for UTF8 (if switched on) or
ASCII (if switched off).

2-10 BMDFM
http://bmdfm.com 2025



Architectural Overview 2.3 Configuration

PROC_HEARTBEAT S switches process heartbeats on/off. The heartbeats are
sent between CPUPROC, OQPROC and IORBPROC processes in order to detect
whether the processes are alive.

DFSTLHAZARD_DETECT switches detection of dataflow stall hazards on/off.
All stalled dataflow instructions will be purged after a stall hazard is detected.

ALLOW_DROP_NONPROD allows dropping nonproductive instructions (if
switched on). Nonproductive instructions are those that do not influence any
execution path for achieving results of an application program (the results of an
application program are VM native inputs and outputs of this application
program).

PROC_CPU_L OGS switches Data Flow Logging Facility on/off. Thisfacility
allows one logging the CPUPROC and IORBPROC process activitiesinto log
files.

HARD_ARRAY_SYNCHRO ensures correct array processing where the
multiple assignments are applied to the same array members. Asarule, the
BMDFM system asks to switch this option on if it is necessary.

EXT_IN_OUT_SYNCHRO synchronizes console messages that are generated
by the Loader/Listener Pair. If this configuration parameter is switched on, the
L oader always waits until the Listener releases console.

OQ DB SEM _LIMIT definesthe maximal allowed number of SVR4
semaphoresin the OS kernel that are owned by the BMDFM instance. By defaullt,
no limitation is set. Note that BMDFM can be configured with POSI X/SV R4-

| PC-synchronization.

RELAXED_CNSTN_SM_MODEL compensates relaxed consistency model of
shared memory (if switched on). The compensation mechanisms are activated by
default. It is strongly recommended to keep them activated if the consistency
model of SMP machineis not clear enough.

DEFOP configures user-defined functions to be loaded into CPUPROC local
memory.

BMDFM 2-11
2025 http://bmdfm.com



2.3 Configuration

Architectural Overview

Figure 2-4 shows configuration example for a 1024-way SMP machine.

SHMEM POOL_SIZE = 10995116277760
SHMEM POOL_ MNTADDR = 0
SHMEM POOL PERMS = 432
SHMEM POOL BANKS = 500
POSIX SEMA4 SYNC = RW+Count
ARRAYBLOCK SIZE = 64
0Q FUNC ARG COUNT = 32
Q_0Q = 50000
Q DB = 10000
Q IORBP = 1000
N_IORBP = 10
N _TRACEPORT = 5
N_CPUPROC = 2048
N _OQPROC = 2048
N _IORBPPROC = 2048
CPUPROC_MTHREAD = No
OQPROC_MTHREAD = No
IORBPPROC_MTHREAD = No
BMDFMLDR MTHREAD = No
MTHREAD TLS CHECK = No
ALLOW CPUPROC_ASLR = No
T STATISTIC = 1
CONSOLE OUT UTF8 = No
PROC_HEARTBEATS = Yes
DFSTLHAZARD DETECT = Yes
ALLOW DROP NONPROD = No
PROC_CPU_LOGS = No
HARD ARRAY SYNCHRO = No
EXT IN OUT SYNCHRO = Yes
0Q DB _SEM LIMIT = 0
RELAXED CNSTN SM MODEL = Yes

DEFOP = defun true

defun false

-)

(
(
# (defun

S R R N N e L T T T T O O S O T T T

ETS

(10TB) Shared memory pool size [Bytes]
ShMemPool mount address (0O=auto)

ShMemPool permissions (0660=="rw-rw----")
Number of banks in pool

Replace None/RW/RW+Count SVR4 with POSIX sem
Array block size [Entities]
0OQ functions arguments count [Entities]
Operation Queue (0Q) size [Entities]
Data Buffer (DB) size [Entities]

I/0 Ring Buffer Port (IORBP) size [Entities]
Number of IORBPs
Number of Trace Ports (TPs)

Number of CPU PROCs
Number of OQ PROCs
Number of IORBP PROCs

CPU PROC is multithreaded
OQ PROC is multithreaded
IORBP PROC is multithreaded
BMDFM1dr is multithreaded

Check for Thread-Local Storage (TLS)
Allow CPU PROC Address Space Layout
Randomization (ASLR)

Time to scan DFM for statistic [Seconds]
Adjust console output for ASCII or UTFS8
Heartbeats for the CPU, OQ && IORBP PROCs
Detection of dataflow stall hazards

Allow dropping nonproductive instructions
Logs registration for the CPU && IORBP PROCsS
Hard synchronization of the arrays

I/0 synchronization of external task

Max number of 0OQ&&DB semaphores (O=unlim.)

Compensate ShMem relaxed consistency

(progn 1))
(progn 0))

Figure 2-4. Configuration example for a 1024-way SMP machine

2-12

BM
http://bmdfm.com

a4

DFEM
2025



Architectural Overview 2.4 Top Screen of the Running System

2.4 Top Screen of the Running System

The top screen of the running BMDFM is shown in Figure 2-5. It clearly
demonstrates that BMDFM is built according to the MIM D ar chitecture and has
negligible dynamic scheduling over head!

Window Edit Options

TIME
11
!

Figure 2-5. BMDFM running on a 4-way SMP machine

BMDFM 2-13
2025 http://omdfm.com



2.4 Top Screen of the Running System Architectural Overview

This page is intentionally left blank.

2-14 BMDFM
http://bmdfm.com 2025



Chapter 3
Installation and Use

3.1 Structure of Modules on the Disk

BMDFM modules shown in Figure 3-1. All modules are given as executables and
some of them additionally as object files and sources. Recompilation is necessary
only if anew application (interface and implementation) is written in C/C++.
Singlethreaded version of BMDFM consists of only one module, al the rest
belongs to the multithreaded engine. The multithreaded BMDFM starts with the
BMDFMsrv server, which automatically starts multiple copies of the daemons
(CPUPROC, OQPROC, IORBPROC and PROCstat). The BMDFMIdr,
BMDFMtrc and freel PC (as well as the fastlisp and BMDFMsrv themselves) are
standalone utilities.

cflp udf.h cflp udf.c User applications interface and implementation

Makefile Build file
fastlisp.o fastlisp BMDFM singlethreaded engine
BMDFMsrv.o BMDFMsrv BMDFM multithreaded engine server unit
CPUPROC.o0 CPUPROC CPU PROC daemon
OQPROC 0OQ PROC daemon
IORBPROC IORBP PROC daemon
PROCstat Daemon that collects statistic information
BMDFMldr.o BMDFMldr External task unit (Loader/Listener Pair)
BMDFMtrc External Tracer unit
freeIPC Utility that releases system IPC resource after crash

Figure 3-1. BMDFM modules

Normally, the BMDFM files are gathered in a$BMDFM_HOME/ working
directory. Thedirectory structureis shownin Figure 3-2. ChooseaBMDFM build
by linking Bin directory to the correct target directory (default link is Bin ->
Build/x86_Linux_32 gccV485/), e.g. delete default link and create another one:
rm Bin; In -s Build_ExtendedI nterface/x86-64 Linux_64 gccV1021 Bin

BMDFM 3-15
2025 http://bmdfm.com



3.1 Structure of Modules on the Disk

Installation and Use

$BMDFM_HOME/
EULA. txt
READ ME.1ST
Doc/

BMDFMmission.pdf
BMDFMdoc.pdf
BMDFMfaq.pdf
<Examples>/

Bin/ -> Build/x86_ Linux 32 gccV485/

fastlisp -> Bin/fastlisp
BMDFMsrv -> Bin/BMDFMsrv
CPUPROC -> Bin /CPUPROC
OQPROC -> Bin/OQPROC
IORBPROC -> Bin/IORBPROC
PROCstat -> Bin/PROCstat
BMDFMldr -> Bin/BMDFMldr
BMDFMtrc -> Bin/BMDFMtrc
freeIPC -> Bin/freeIPC
fastlisp.cfg -> Bin/fastlisp.cfg

BMDFMsrv.cfg -> Bin/BMDFMsrv.cfg

Build/

3-16

Build MultiProcess/ Bui
x86_WindowsCygnus_ 32 geccV291/
*x86_WindowsCygwin 32 gccV640/
%86_WindowsUWIN 32 geccV295/
%86 _WindowsSFU-SUA 32 gccV33/
x86_Linux 32 gccV485/
*86_Linux 32 geeV1021/
x86_Linux 32 clangV1101/

%86 Linux_32_iccVxe2019u3/
x86_FreeBSD 32 gccV920/
x86_FreeBSD_32_clangV801/
x86_OpenBSD 32 gccV830/
x86_OpenBSD 32 clangV801/

x86_ NetBSD 32 gccVe3o/
x86_NetBSD_32_clangV900/
x86_MacOS_32_clangV702/
x86_SunOS_32_ccV510/
x86_SunOS_32_gccV343/
%86_UnixwareSCO 32 cesV42/
x86_UnixwareSCO 32 geeV295/
%86 _Minix 32 clangV36/
x86_Android 32 geeV49x/
x86_Android 32 _clangV503/
x86-64_ WindowsCygwin 64 gccV640/
x86-64_ Linux 64 gccV485/

x86-64_ Linux 64_gccVv1021/
x86-64_ Linux 64 clangV1101/
%86 - 64:Linux:6 4:icch9201 9u3/
%86-64 FreeBSD 64 gcecV920/
x86-64_ FreeBSD_ 64 clangV801/
%86-64 OpenBSD 64 gcecV830/
x86-64 OpenBSD_64_ clangV801/
%86-64 NetBSD 64 gccV830/
x86-64 NetBSD_ 64 _clangV900/
x86-64 MacOS_64_clangV702/
%86-64 MacOS_64_clangV1200/
x86-64 SunOS_64_ccV510/

x86-64 SunOS_64_gccV343/

%86-64 Android 64 geceV49x/
%86-64 Android_64_clangV503/
VAX Ultrix 32 geeV272/
Alpha Tru640SF1l_64_ccV65303/
Alpha Tru640SF1l 64 gccV423/
Alpha Linux 64 _gecV424/
Alpha Linux 64 gccV1021/
Alpha FreeBSD_64_gccV346/
Alpha OpenBSD 64_gccV421/

fastlisp.cfg cflp udf.h
BMDFMsrv.cfg cflp udf.c
Makefile

1d ExtendedInterface/
IA-64 HP-UX 32 ccVa0628/
IA-64 HP-UX 32 gccV472/
IA-64 HP-UX 64 ccVa0628/
IA-64 HP-UX 64 gccV472/
IA-64 Linux 64 gccV4l2/
IA-64 Linux 64_gccV463/
IA-64 Linux 64 gccV1021/
IA-64 FreeBSD 64 gccV421/
XeonPhiMI CiLiEux:647i.cche2017u5/
XeonPhiMIC Linux 64 _gccV470/
MCSTelbrus Linux 32 leecV120/
MCSTelbrus Linux 32 leccV125/
MCSTelbrus Linux 64_lccV120/
MCSTelbrus Linux 64 lccV125/
PA-RISC HP-UX 32 ccVc0370/
PA-RISC HP-UX 32_gccV471/
PA-RISC HP-UX 64 ccVc0370/
PA-RISC HP-UX 64 gcecV471l/
PA-RISC Linux 32 geeV492/
PA-RISC Linux 32 geecV1021/
SPARC SunOS 32 ccV510/

SPARC SunOS_32_gccV343/
SPARC SunOS 64 ccV510/

SPARC SunOS 64 gccV343/
SPARC Linux 32 gccV1021/
SPARC Linux 32 clangV1101/
SPARC Linux 64 geeV1021/
SPARC Linux 64 clangV1101/
SPARC FreeBSD 64_gccV421/
SPARC OpenBSD 64 gccV830/
SPARC OpenBSD 64 clangV801/
MIPS IRIX 32 ccV744m/

MIPS IRIX 32 gccV471/

MIPS IRIX 32 gccV471 TLS/
MIPS IRIX 64 ccV744m/

MIPS IRIX_ 64 gccV471/

MIPS IRIX 64 gccV471 TLS/
MIPS Linux 32 geceV930/

MIPS Linux 32 geeV830 sgi/
MIPS Linux 64 gceV930/
MIPSel Linux 32 gccV930/
MIPSel Linux 64_gccV930/
MIPSel Android 32 geeV49x/
MIPSel Android 32 clangV503/
MIPSel Android 64 gccV49x/
MIPSel Android 64 clangV503/

PowerPC AIX 32 x1lcV1313/
PowerPC AIX 32 gccV494/
PowerPC AIX 64 x1cV1313/
PowerPC AIX 64 gccV494/
PowerPC_MacOS 32 gccV421/
PowerPC MacOS 64 geeV421/
PowerPC_Linux 32 gccV492/
PowerPC Linux 32 gccV1021/
Powe rPC:Linux:3 2 :clangVB 50/
PowerPC Linux 32 clangV1101/
PowerPC Linux 64 geccV492/
PowerPC Linux 64 gccV1021/
PowerPC Linux 64 clangV350/
PowerPC Linux 64 clangV1101/
PowerPC FreeBSD 32 gccV920/
PowerPC_FreeBSD 32 clangV80l/
PowerPC FreeBSD 64 gccV920/
PowerPC FreeBSD 64 clangV80l/
PowerPCle Linux 32 geeV930/
PowerPCle Linux 64 gececV1021/

PowerPCle Linux 64 clangV1101/

PowerPCle Linux 64 x1cV1611/
§390_z08-USS 32 x1lcv24/
S390_2z0S-USS_64_xlcv24/
S390_Linux_ 32 gccV930/
S$390_Linux 64 gccV930/
$390_Linux_64_clangV381/
M68000 Linux 32 geeV930/
ARMeabi Linux 32 geccV1021/
ARMeabihf Linux 32 geceV1021/
ARMeabihf Linux 32 clangV381/
ARM Linux 64_gcecV1021/

ARM Linux 64 clangV1101l/

ARM FreeBSD 64 gccV920/

ARM: FreeBSD:G 4::: langV801/
ARM Android 32 gccV49x/

ARM Android 32 clangV503/
ARM Android 64 _gccV49x/

ARM Andreid 64 clangV503/
ARM MacOS 64 _clangV1200/
ARMe MacOS_64 clangV1200/
ARMbe Linux 64 gccV930/
RISCV_Linux 32 gecV930/
RISCV_Linux 64 gccV930/
LoongArch Linux 64 gccV1300/

<Arch> <0S> <Bits> <Compiler>[ <Feat.>]/

fastlisp.o fastlisp OQPROC [O0QPROC.0]
BMDFMsrv.o BMDFMsrv IORBPROC [ IORBPROC. 0]
CPUPROC.o CPUPROC PROCstat [PROCstat.o]
BMDFMldr.o BMDFMldr BMDFMtrc [BMDFMtrc.o]
freeIPC [ freeIPC.o]

Figure 3-2. BMDFM directory tree

http://bmdfm.com

BMDFM
2025



Installation and Use 3.2 Programming and Compilation

3.2 Programming and Compilation

Normally, the life cycle of aBMDFM user application has two major steps as
shown in Figure 3-3. At first the application is devel oped and tested using the
BMDFM singlethreaded engine, then if it works properly it can be moved without
any modifications to the BMDFM multithreaded engine.

Small size
test patterns.,

Singlethreaded
Engine

___________ - Works Modifi- | |
N\ properly? cations Development
Full size s \\ Cycle
real patter 1= /2 e R —
Exploitation

Multithreaded
Engine

END

Figure 3-3. BMDFM user application life cycle

A BMDFM user application itself can be built according to the three schemesin
Figure 3-4 (actually, the application can be structured as any combination of these

three schemes).

BMDFM 3-17
2025 http://bmdfm.com



3.2 Programming and Compilation Installation and Use

C/C++ file structure behind

user application file system configuration file BMDEM C interface
r—— -~~~ T T——77 r—- - - T ——= Wr—- -~ -~~~ -7~ 1
| pud£o () { :l ud£0 () { 11 pud£0 O { |
:[ ... virtual machine code | :[ ... virtual machine code : :[ ... C/C++code :
| 1l ; | '
[ I . M . |
| 1l I I
| 1l : | :
| rudeN () { |} puaen 0 { ) peaeno ¢ |
|[ ... virtual machine code : |[ ... virtual machine code | |[ ... C/C++code |
[ | i I
| : I | e I
|

|
: I| user application file user application file

I ______________________________
: main () { I :—main(){ 1| :—main(){ 1|
(| wdfo(); Iy ] uwdfo(); [11 ] uwd€o(); I
| . virtual machine code : I ... virtual machine code : | ... virtual machine code :
|| uaeNQ; THRSEOE THRSENE |
| } It} 1R I
________________ I e e e —a

Scheme A Scheme B Scheme C

Figure 3-4. BMDFM user application structure

Scheme A. A complete application iswritten in pure virtual machine language. In
this case BMDFM will exploit fine-grain parallelism, thus BMDFM will try to
unroll the loops and to execute all statementsin paralléel. If it runson anon-UMA
(non-Uniform Memory Access) machine the dynamic scheduling can be
expensive.

Scheme B. According to this scheme some UDFs (User Defined Functions) are
located in the configuration profile, thus BMDFM will upload them into CPU
PROCs Local Memory and their bodies will be prevented from scheduling for
parallel processing (such aUDF will be treated as one seamless statement). In this
case lesstimeis obviousy spent on dynamic scheduling.

Scheme C. This scheme enables using the C code directly instead of the virtual
machine code. Of course the C code compiled and optimized by alocal C
compiler isfaster than virtual machine code. In this case some BMDFM modules
should be recompiled as shown in Figure 3-5.

3-18 BMDFM
http://bmdfm.com 2025



Installation and Use 3.2 Programming and Compilation

C/C++ user
ol cflp_udf.h
appi;:::stlon cflp_udf.c

C/C++ compiler

User
Application

| cflp_udf.o

Singlethreaded
Engine

Multithreaded

CPUPROC

BMDFEMIdr

Figure 3-5. Recompilation of the BMDFM modules

BMDFM 3-19
2025 http://bmdfm.com



3.3 Singlethreaded Engine Installation and Use

3.3 Singlethreaded Engine

The BMDFM singlethreaded engine can be used from a command line according
to the syntax shown in Figure 3-6. The help option creates a documentation file
and a set of examples on the disk. The compile2disk and compileMinimized2disk
options create a machine dependent compiled code of the application on the disk.
The showDebuglnfo option displays additional debug information of the
application. Optionally, the environment variables define location of the
configuration profile and further configuration parameters.

Usage0O: fastlisp -h|--help

Usagel: fastlisp -V|--versions

Usage2: fastlisp [-q|--quiet] <FastLisp file name> [args...]

Usage3: fastlisp [-sd|--showDebugInfo] <FastLisp file name> [args...]

Usage4: fastlisp [-c|--compile2disk] <FastlLisp file name> [args...]

Usage5: fastlisp [-cm|--compileMinimized2disk] <FastLisp file name> [args...]
Usage6: fastlisp [-q|--quiet] <Precompiled FastLisp file name>

Usage7: fastlisp [-sd|--showDebugInfo] <Precompiled FastLisp file name>

Runtime environment variable dump:
FAST LISP CODE PRINT TERM WIDE=0;
FAST LISP CODE PRINT CFG UDF=1;
FAST LISP CODE PRINT MODIFIED SRC=1;
FAST LISP CODE PRINT DUMPED SRC=1;
FAST LISP CODE PRINT COMPILED=1;
FAST LISP CODE PRINT LINKED=1;

FAST LISP CODE PRINT DECOMPILED=1;
FAST LISP MAPCAR WITH DECOMPILER=1;
FAST LISP COMPILE JUSTIFIED TYPES=1;
FAST LISP COMPILE WITH DEBUGINFO=1;

The following environment variable:

FAST LISP CFGPROFILE path="fastlisp.cfg"
specifies a configuration profile that can be used for the Global FastLisp
function definitions. The format of the configuration profile is:

<(DEFUN ...)>{ <(DEFUN ...)>} # <EOF>.

Figure 3-6. BMDFM singlethreaded engine command line syntax

The BMDFM singlethreaded engine compiles, links and runs auser application in
a standalone mode as shown in Figure 3-7.

3-20 BMDFM
http://bmdfm.com 2025



Installation and Use 3.3 Singlethreaded Engine

Configuratio

Compiled?

L Compiler I

Singlethreaded Engine

________ I

Run-time
Environment

Figure 3-7. BMDFM singlethreaded engine work flow

BMDFM 3-21
2025 http://bmdfm.com



3.4 Server Unit Installation and Use

3.4 Server Unit

Thereis only one way to start the BMDFM multithreaded engine correctly. It
should be started by the BMDFM Server from a command line according to the
syntax shown in Figure 3-8. The BMDFM Server may also run as a daemon.
Additional logfile options enable/disable logging of console information on the
disk. Optionally, the environment variables define connection pathes of the
BMDFM Server, locations of all daemons, which will be started in the
background, and further configuration parameters.

Usage0O: BMDFMsrv

Usagel: BMDFMsrv -h|--help

Usage2: BMDFMsrv -V|--versions

Usage3: BMDFMsrv [-d|--daemonize]

Usage4: BMDFMsrv [-d|--daemonize] -n|--no-logs

Usage5: BMDFMsrv [-d|--daemonize] -1|--logfile <log file name>

Runtime environment variable dump:
BM DFM MAPCAR WITH DECOMPILER=1;
BM DFM COMPILE JUSTIFIED TYPES=1;
BM DFM COMPILE WITH DEBUGINFO=1;
BM DFM CFGPROFILE path="./BMDFMsrv.cfg";
BM DFM PROCstat path="./PROCstat";
BM DFM CPUPROC path="./CPUPROC";
BM DFM OQPROC path="./OQPROC";
BM DFM IORBPROC path="./IORBPROC";
BM DFM CONNECTION FILE path="/tmp/.BMDFMsrv";
BM DFM CONNECTION NPIP path="/tmp/.BMDFMsrv npipe";
BM DFM EMERGENCY IPC FILE path="./freeIPC.inf";
BM DFM LOGFILE KEEP NxSIZE="10x10000000";
BM DFM PROCLOGFILE KEEP NxSIZE="10x10000000";
BM DFM PROCLOGFILE path="./PROCs.log";

Figure 3-8. BMDFM Server command line syntax

The BMDFM Server unit reads the configuration profile, initializes the Shared
Memory Pool, starts multiple copies of the daemons in the background and enters
aconsole mode. The BMDFM Server unit is also responsible for shutting down
the whole multithreaded engine correctly. This procedureisillustrated in

Figure 3-9. A screen shot of the BMDFM Server console, when it operates typical
routines, is shown in Figure 3-10.

3-22 BMDFM
http://bmdfm.com 2025



Installation and Use

3.4 Server Unit

Console  /

oy

BEGIN

Initialize Shared
Memory Pool

v

Start PROC stat

v =

Start multiple copies
of CPU PROC

v

Start multiple copies
of OQ PROC

v

Start multiple copies
of IORBP PROC

#7

yes

Shut Down
Seqguence

Multithreaded Engine

Figure 3-9. BMDFM Server unit work flow

BMDFM
2025

http://bmdfm.com

3-23



3.4 Server Unit Installation and Use

- Temina |

Help

BMDFM SMP MIMD Server Unit

Console input: shmempool
[ 15 t 5 . =
MEMORY DRIVEN BY REENTERABLE CODE

tes (10 BANK(S) of 199999988 each).

b e e e e B e

A I f e £ £ 22 1 8 2¢ o
p1pe[IORBPPROC#6] SOURCES RELEASE “CTRL SEQUENCE has been started on SocketN# 2. IORBPPROC#6{(PID=13380) will take c
are of 1t [m59#20]

elna1 Loadet/L1stenen pa - (P 6399(]6400)) is détached {logged out) at: "Sat Dec 22 15:57:5
- [MSG#30]

istener ge RSION_BMDFM_SYS_: "Sancho M. BMDFMSys V5.9.9
) [ COMPILED ON: "SunOS melsun5 5.5.1 Gene|1c 103640-36 sun4u” ) ( COMPILED_BY: '"cc: SC4.0 18 Oct 1995 C 4.0 as [3
2 b1t MSB executable SPARC Version 1, dynamically linked, stripped] at Sun Dec 2 13:45:14 MET 2001".) Commenced (log
"Sat Dec 22 15:57:55 2001". USR_JOB_NAM 1_03. . [MSG#311]

d tl PIFE at
npipel ExtTaskLd#2 Tas P 6416. Connection ac now1edged (VERSION_ BMDFM_SYS "Sancho M. BMDFMSys V5.9.9."
.) (_COMPILED_ON: ”SunOS melsunS 5.5.1 Generic_103640-36 sun4u".) (_COMPILED_BY: "cc: .0 18 Oct 1995 C 4.0 as [32-
bit MSB executable SPARC Version 1 ynamically Tinked 5t|1pped at Sun Dec 2 13:45:14 MET 2001".) Conmenced {logge

Sat Dec 22 15:57:55 200 USR_JOB_| 1 SG#32]
f i t t 2 .

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[
l_f M_DFM Server TTY Console> Command: {(Please don’t use °“Ctrl- DOWN instead)

Figure 3-10. BMDFM Server console view

3-24 BMDFM
http://bmdfm.com 2025



Installation and Use 3.5 External Task Unit

3.5 External Task Unit

The external task unit (Loader/Listener Pair) can be used from a command line
according to the syntax shown in Figure 3-11. The compile2disk option creates a
machine dependent compiled code of the application on the disk. The
showDebuglnfo option displays additional debug information of the application.
Optionally, the environment variables define connection pathes to the BMDFM
Server running instance and further configuration parameters.

Usage0O: BMDFMldr -h|--help

Usagel: BMDFMldr -V|--versions

Usage2: BMDFMldr [-q|--quiet] <FastLisp file name> [args...]

Usage3: BMDFMldr [-sd|--showDebugInfo] <FastLisp file name> [args...]
Usage4: BMDFMldr [-c|--compile2disk] <FastLisp file name> [args...]
Usage5: BMDFMldr [-q|--quiet] <Precompiled FastLisp file name>

Usage6: BMDFMldr [-sd|--showDebugInfo] <Precompiled FastLisp file name>

Runtime environment variable dump:
BM DFM CODE PRINT TERM WIDE=0;
BM DFM CODE PRINT CFG UDF=1;
BM DFM CODE PRINT MODIFIED SRC=1;
BM DFM CODE PRINT DUMPED SRC=1;
BM DFM CODE PRINT LINKED=1;
BM DFM CODE PRINT DFM UNICODE=1;
BM DFM MAPCAR WITH DECOMPILER=1;
BM DFM COMPILE JUSTIFIED TYPES=1;
BM DFM COMPILE WITH DEBUGINFO=1;
BM DFM CONNECTION FILE path="/tmp/.BMDFMsrv";
BM DFM CONNECTION NPIP path=" /tmp/. BMDFMsrv _npipe";

Figure 3-11. External task unit command line syntax

The external task unit reorganizes the user code, makes static scheduling,
compiles, connects multithreaded engine, links, starts listener thread and uploads
the user application into the multithreaded engine as shown in Figure 3-12.

BMDFM 3-25
2025 http://bmdfm.com



3.5 External Task Unit Installation and Use

Compiled?

v
| static Scheduler_J

v

Compiler

|
|
|
|
|
: |Code Reorganizer
|
|
|
|
|

External Task Unit (Loader/Listener Pair)

Compiled
Code

Connect multi-
threaded engine

v
| Linker
\ 4

Start listener
thread

i -

Upload

v

Figure 3-12. External task unit work flow

3-26 BMDFM
http://bmdfm.com 2025



Installation and Use 3.6 External Tracer Unit

3.6 External Tracer Unit

The external tracer unit can be used from a command line according to the syntax
shown in Figure 3-13. Additional logscreen options enable/disable information
logging on the disk. The environment variables serve like in the external task unit.

Usage0O: BMDFMtrc

Usagel: BMDFMtrc -h|--help

Usage2: BMDFMtrc -V|--versions

Usage3: BMDFMtrc -1|--log-last-screen [<log file name>]
Usage4: BMDFMtrc -L|--log-all-screens [<log file name>]

Runtime environment variable dump:
BM DFM TRACER LOG TERM WIDE=0;

BM DFM CONNECTION FILE path="/tmp/.BMDFMsrv";
BM DFM CONNECTION NPIP path="/tmp/.BMDFMsrv npipe";

Figure 3-13. External tracer unit command line syntax

The external tracer unit connects the multithreaded engine and enters the tracer
console as shown in Figure 3-14. The external tracer is shown in Figure 3-15.

BEGIN

=
|

|

|

|

|

|

|

|

|

|

|

|

I
-

I g I

| Connect multi- E I

I threaded engine /i

I # =g

I : I

- l -1 console mode s |

\ 4 | 5 I

[

Console | I
Log File. : I
I |
I [
I I

Figure 3-14. External tracer unit work flow

BMDFM 3-27
2025 http://bmdfm.com



3.6 External Tracer Unit

Installation and Use

Window

3-28

FOmNONANN—O

Edit Options

@l
Configuration menu For the trace sess

Current available selections:

CPU info will be shown.

00 info will be shown,

DE info will be shown.

IORBF info will be shown.

Free entities will be omitted in output Tist.
Filter: MNone

Wait for KEYPRESSED while tracing.

Trace delay if WOT waiting for KEYPRESSED: Osec.
Tracer behavior: independent trace. {master_mode)
array data output: only first{zero) member.
Brief info in output Tist.

Quit configuration menu back to the trace process.

Q.
Enter your choice please: _|

Figure 3-15. External tracer console view

http://bmdfm.com

BMDFM
2025



Appendix A
Programming Language Reference

The BMDFM virtua machine language is based on a prefix form syntax and uses
transpar ent dataflow semantics.

A.l Program

A program is afunction:

| "<FuncName>" |
| (<FuncName> <Val argumentl> <Val argument2> ... <Val argumentN>) |
| --> <Val calculated value> |

It returnsits calculated value as aresult. It is possible to specify aformal
argument, a constant value, a variable name or some other function at the place of
the function argument. Formal arguments appear like $1 ... $N. All argument
types will be automatically converted to the required types when the function is
caled.

# isacomment symbol. It indicates that all text following the "# symbol (until
the carriage return) isacomment. All symbolsin the same line after the "# symbol
will be ignored.

Use (comments | comment | remarks | remark | rem ...) for multiple line comments.

BMDFM A-29
2025 http://bmdfm.com



A.2 Constant definition Appendix A

A.2 Constant definition

Integer constants:

"<char>{<char>}"
Special symbols are:

| |
| |
| \a - beep; |
| \b - back space;

| \e - escape; |
| \f - page feed;

| \n - new line; |
| \r - return; |
| \t - tab; |
| \v - vertical tab;

| \\ - \;

NI |
| \OxNN - symbol by its hex code (e.g.: \0x25 == ~%', \0x5C == “\'). |
| |
| Use ("<string>"{ "<string>"}) concatenation for a long string. |

A-30 BMDFM
http://bmdfm.com 2025



Appendix A A.3 Variables

A.3 Variables

V ariable names are not case sensitive. A variable name starts with aletter

followed by letters, digits and other symbolsexcept (', )', ™, @' and ":' symbols.
Variables change their types dynamically among integers, floats, strings and nil.

Boolean "TRUE' is considered to be an integer non-zero value.
Boolean "FALSE' is considered to be an integer zero value.

A variable can also be an array. An array changes its own size (the number of its
members) dynamically. Array members can be integers, floats, strings, NIL's and
arrays themselves that allows one creating list and tree structures.

First(zero) array member cannot be an array itself.

Predefined terminal control variables (same names like the corresponding
terminal capabilities functions) are:

TERM TYPE

| | | |
| + + |
| | | <"TERM' environment> |
| LINES_ TERM | | <termcap(1i)> |
| COLUMNS TERM | | <termcap (co)> |
| CLRSCR_TERM | string | <termcap(cl)> |
| | | <termcap (mr) > |
| BLINK TERM | | |
| | | |
| | | |
| | | |
| | | |
| | | |

REVERSE TERM String

String <termcap (mb) >

BOLD TERM String <termcap (md) >

NORMAL TERM String <termcap (me) >

HIDECURSOR TERM String <termcap (vi) >

SHOWCURSOR TERM String <termcap (ve) >

GOTOCURSOR_TERM String <termcap (cm) >
_______________________________________________________________________ 1
BMDFM A-31

2025 http://bmdfm.com



A.3 Variables Appendix A

Variable assignment and index functions:

n setqll llalsetqll
| (setqg <VarName> <Val to be assigned single value or array>)
| --> <Val assigned single value or array>

"arsetqg"

| (arsetq <VarName> <IVal index>

| <Val to be assigned single value or array>)
| --> <Val assigned single value or array>

"index"
| (index <VarName> <IVal index>)
| --> <Val array member value specified by array member index> |

"alindex"
| (alindex <VarName> <IVal indices>)
| --> <Val array of values specified by number of indices>

A-32 BMDFM
http://bmdfm.com 2025



Appendix A A.4 Special construction functions

A.4 Special construction functions

Argument types will be casted.

| "progn" |
| (progn <Val to be evaluated valuel> <Val to be evaluated value2> |
| ... <Val to be evaluated valueN>)

| --> <Val evaluated valueN>

| nifmn

| (if <IVal condition> <Val to be evaluated if true>

| <Val to be evaluated if false>)
| --> <Val evaluated on true or false>

While-loop:
| "while™® |
| (while <IVal condition> <Val to be evaluated while true>)
| --> <Ival 0> |
For-loop:
n forll

| (for <VarName control variable> <IVal start value>
| <IVal increment> <IVal end value>
| <Val to be evaluated iteratively>)

--> <IVal 0>

BMDFM A-33
2025 http://bmdfm.com



A.4 Special construction functions Appendix A

User Defined Function (UDF). UDF names are not case sensitive. A UDF name
may consist of letters, digits and other symbols except (', )', ™, @ and ™'
symbols. A UDF can be nested inside of another UDF. Formal arguments appear
like $1 ... $N in the UDF body. A UDF may access only its own private local
variables, or in other words, al variables that are referenced in the UDF body are

| "defun" |
| (defun <FuncName> <Val to be evaluated>)
| --> <SVal empty string>

| "break" |
| (break) |
| --> <SVal empty string>

| nexith |
| (exit) |
| --> <SVal empty string>

A-34 BMDFM
http://bmdfm.com 2025



Appendix A A.5 Input/Output functions

A.5 Input/Output functions

"accept"
| (accept <SVal prompt message for console or empty for stdin>) |
| --> <SVal input string>

"scan console"
| (scan_console <IVal wait key forever if 1 or useconds if positives) |
| --> <SVal keypressed string>

"outf"
| (outf <SVal printf format> <Val value>)
| --> <SVal printf formatted string that was printed to stdout> |

"file create"
| (file create <SVal file name>)
| --> <IVal file descriptor or -1>

"file open"
| (file open <SVal file name>)
| --> <IVal file descriptor or -1>

"file write"
| (file write <IVal file descriptor> <SVal string to_be written>) |
| --> <IVal number of bytes written or -1>

"file read"
| (file read <IVal file descriptor> <IVal number of bytes to be reads) |
| --> <SVal string read or empty string>

BMDFM A-35
2025 http://bmdfm.com



A.5 Input/Output functions Appendix A

"file seek beg"
(file seek beg <IVal file descriptor>
<IVal offset in bytes from file beginning>)
--> <IVal offset in bytes from file beginning or -1>

| — — —

"file seek cur"
(file seek cur <IVal file descriptor>
<IVal offset in bytes from file current offset>)
--> <IVal offset in bytes from file beginning or -1>

| — — —

"file seek end"
(file seek end <IVal file descriptor>
<IVal offset in bytes from file end>)
--> <IVal offset in bytes from file beginning or -1>

| — ——

"file close" |
(file close <IVal file descriptor>)
--> <IVal 0 or -1> |

| — — ——

"file remove" |
(file remove <SVal file name>)
--> <IVal 0 or -1> |

) — — —— o

"user io" |
(user io <IVal user defined integer> <SVal user defined string>) |
--> <SVal string returned by user defined io c¢ function> |

) — — —— o

A-36 BMDFM
http://bmdfm.com 2025



Appendix A A.6 Built-in comparison functions

A.6 Built-in comparison functions

Second argument type will be casted to first argument type:

| ==" mequal™" |
| (== <Val valuel> <Val value2>)
| --> <IVal true if valuel and value2 are equal otherwise false> |

"1=" "notequal" |
(1= <Val valuel> <Val value2>)
--> <IVal true if valuel and value2 are not equal otherwise false>|

) —

nen nleggn |
(< <Val valuel> <Val value2>)
--> <IVal true if valuel is less than value2 otherwise false> |

) ——

nyn llgreaterll |
(> <Val valuel> <Val value2>)
--> <IVal true if valuel is greater than value2 otherwise false> |

) ——

"<=" "]essorequal"
(<= <Val valuel> <Val value2>)
--> <IVal true if valuel is less than value2 or_
_if valuel and value2 are equal otherwise false>

J————
—_—————

">=" "greaterorequal"
(>= <Val valuel> <Val value2>)
--> <IVal true if valuel is greater than value2 or
_if valuel and value2 are equal otherwise false>

J————
—_————

BMDFM A-37
2025 http://bmdfm.com



A.7 Built-in boolean functions

Appendix A

A.7 Bullt-in boolean functions

Argument types will be casted:

A-38

.
~

) —

) ——

n && n n and n
(&& <IVal booleanl> <IVal boolean2 short circuit_evaluation>)
--> <IVal boolean AND>

n||n ngrn
(|| <IVal booleanl> <IVal boolean2 short circuit evaluations)
--> <IVal boolean OR>

n ! n n no t n
(! <IVal boolean>)
--> <IVal boolean NOT>

http://bmdfm.com

BMDFM
2025



Appendix A A.8 Built-in integer functions

A.8 Bulilt-in integer functions

Argument types will be casted:

| "ival™ |
| (ival <vVal value>) |
| --> <IVal integer> |

"indices" |
(indices <Val value>) |
--> <IVal number of array indices>

) —

"irnd" |
(irnd <IVal maxrange or negative to reset random generator>) |
--> <IVal random value within the range of 0 to maxrange> |

) —

ngn wigddn |
(+ <IVal integerl> <IVal integer2>)
--> <IVal addition integerl+integer2>

) —

nu_n ujigyb" |
(- <IVal integerl> <IVal integer2>)
--> <IVal subtraction integerl-integer2>

) —

wEkW wipmyln |
(* <IVal integerl> <IVal integer2>)
--> <IVal multiplication integerl*integer2>

) —

ll/ll nidiwvn |
(/ <IVal integerl> <IVal integer2>)
--> <IVal division integerl/integer2>

) —

Wkgpm wimpmamn |
(*+ <IVal integerl> <IVal integer2> <IVal integer3>)
--> <IVal MultiplyAccumulateOperation integerl*integer2+integer3> |

) —

BMDFM A-39
2025 http://bmdfm.com



A.8 Built-in integer functions

Appendix A

) — —— —— ) — — —— o ) — — —— o ) — — —— ) — — —— ) — —— ——

) — — ——

A-40

ll%ll n imodll
(% <IVal integerl> <IVal integer2>)

--> <IVal modulo integer remainder integerl%integer2>

ll++ll Iliincrll
(++ <IVal integer>)
--> <IVal increment>

__n nidecrn
(-- <IVal integer>)
--> <IVal decrement>

ng-m llinegll
(0- <IVal integer>)
--> <IVal additive inverse>

n iabsll
(iabs <IVal integer>)
--> <IVal absolute value>

n & n n i and n
(& <IVal integerl> <IVal integer2>)
--> <IVal bitwise AND>

n|n niorn
(] <Ival integerl> <IVal integer2>)
--> <IVal bitwise OR>

n n ixor n
(" <IVal integerl> <IVal integer2>)
--> <IVal bitwise exclusive OR>

n_om uwinot"
(~ <IVal integer>)
--> <IVal bitwise inversion>

http://bmdfm.com

BMDFM
2025



Appendix A A.8 Built-in integer functions

| nysu nighrn |
| (>> <IVal integer> <IVal shift positions>)
| --> <IVal bitwise right shift>

| Heenm nighlm |
| (<< <IVal integer> <IVal shift positions>)
| --> <IVal bitwise left shift>

BMDFM A-41
2025 http://bmdfm.com



A.9 Built-in float functions Appendix A
Argument types will be casted:
| nfEyrglm |
| (fval <Val value>) |
| --> <FVal float> |
| nfrndn |
| (frnd <FVal maxrange or negative to reset random generator>) |
| --> <FVal random value within the range of 0 to maxrange> |
| ny . m mfEadgdn |
| (+. <FVal floatl> <FVal float2>)
| --> <FVal addition floatl+float2> |
| n_ . m nfgypn |
| (-. <Fval floatl> <FVal float2>)
| --> <FVal subtraction floatl-float2>
| Wk Wowfpln |
| (*. <FVal floatl> <FVal float2>)
| --> <FVal multiplication floatl*float2>
| ll/ JnmonfEdiyn |
| (/. <FVal floatl> <FVal float2>)
| --> <FVal division floatl/float2>
| Wk W wfEman |
| (*+. <FVal floatl> <FVal float2> <FVal float3>)
| --> <FVal MultiplyAccumulateOperation float*float2+float3>
| nfabgn |
| (fabs <FVal float>) |
| --> <FVal absolute value>
. T .
A-42 BMDFM
http://bmdfm.com 2025



Appendix A

A.9 Built-in float functions

llfintll n intll
(fint <Fval float>)
--> <FVal integer part>

"fround" "round"
(fround <Fval float>)
--> <FVal rounded value>

Ilfcosll llcosll
(fcos <FVal radians>)
--> <FVal cosine>

) — — ——

Ilfsinll "Sin"
(fsin <FVal radians>)
--> <FVal sine>

) — — —— o

Ilfcasll llcasll
(fcas <FVal radians>)
--> <FVal sine+cosine>

) — — —— o

Ilfatnll llatnll
(fatn <Fval float>)
--> <FVal arctangent radians>

) — — —— o

n fexp n n exp n
(fexp <FVal float>)
--> <FVal exponential>

) — —— —— o

BMDFM
2025

1] fpowll "pow" "f, W mkxw

(fpow <FVal base> <FVal exponent>)

--> <FVal base raised to the power of exponent>

http://bmdfm.com

A-43



A.9 Built-in float functions Appendix A

| nflpnm wlpn |
| (fln <FVal float>) |
| --> <FVal natural logarithm base E>

| "fsqrt" "sqrt" "sqr"
sqrt <FVa oat>
(£ 1 f£1 )
--> <FVal square root>
l_ —_

A-44 BMDFM
http://bmdfm.com 2025



Appendix A

A.10 Built-in string functions

A.10 Built-in string functions

Argument types will be casted:

.
~

P— P— P— P— J— §— f—

) —

BMDFM

2025

n strll
(str <Val value>)
--> <SVal string>

n chr n
(chr <IVal integer>)
--> <SVal one character string>

llasc n
(asc <SVal string>)
--> <IVal code of first character>

"crcsum"
(crcsum <SVal string>)
--> <IVal CRC of string>

n type n
(type <Val value>)
--> <SVal type among I F S Z>

"dump i2s"
(dump i2s <IVal integer>)
--> <SVal memory dump of integer>

"dump f2s"
(dump £2s <FVal float>)
--> <SVal memory dump of float>

"dump s2i"
(dump s2i <SVal string>)
--> <IVal integer dumped from string>

"dump s2f"
(dump s2f <SVal string>)
--> <FVal float dumped from string>

http://bmdfm.com

A-45



A.10 Built-in string functions

Appendix A

) — — —— ) — — —— ) — — —— o ) — — —— o ) — — —— ) — — —— ) — — —— ) — — ——

) — — —— o

A-46

"notempty"
(notempty <SvVal string>)
--> <IVal true if not empty>
n 1enll
(len <SVal string>)
--> <IVal length>
nggn |
(at <SVal substring to be found> <SVal string to be searched in>) |
--> <IVal found first occurrence position from left or zero> |
nyrgtn |
(rat <SVal substring to be found> <SVal string to be searched in>) |
--> <IVal found first occurrence position from right or zero> |
n catll
(cat <SVal stringl> <SVal string2>)
--> <SVal concatenation stringl+string2>
"space"
(space <IVal length>)
--> <SVal empty string filled with spaces>
"replicate"
(replicate <SVal pattern> <IVal number of copies>)
--> <SVal string filled with patterns>

Illeftll
(left <SVal string> <IVal position from left>)
--> <SVal left part of string>

"leftr"
(leftr <SVal string> <IVal position from rights>)
--> <SVal left part of string>

http://bmdfm.com

BMDFM
2025



Appendix A A.10 Built-in string functions

llrightll |
| (right <SVal string> <IVal position from rights>)
| --> <SVal right part of string>

"rightl" |
| (rightl <SVal string> <IVal position from left>)
| --> <SVal right part of string>

"substr" |
| (substr <SVal string> <IVal position from left> <IVal length>) |
| --> <SVal substring derived from string> |

"strtran" |
| (strtran <SVal string> <SVal pattern> <SVal substitution>)
| --> <SVal string where patterns are replaced with substitutions> |

"str raw"
| (str raw <SVal string>)
| --> <SVal string with no escape characters for special symbols> |

"str unraw" |
| (str unraw <SVal string>)
| --> <SVal string with escape characters for special symbols> |

"str dump"
| (str dump <SVal string>)
| --> <SVal semihexadecimal string dump>

"str fmt" |
| (str fmt <SVal printf format> <Val value>)
| --> <SVal printf formatted string>

_______________________________________________________________________ 1
"ltrim" |
| (ltrim <SVal string>)
| --> <SVal string with no leading blanks>
"rtrim" |
| (rtrim <Sval string>)
| --> <SVal string with no ending blanks>
- e e .
BMDFM A-47

2025 http://bmdfm.com



A.10 Built-in string functions

Appendix A

) — —— —— ) — —— —— o ) — — —— o ) — —— —— o ) — —— —— o ) — — —— o

) — — ——

A-48

"alltrim"
(alltrim <SVal string>)

--> <SVal string with neither leading nor ending blanks>

(pack <SVal string>)

--> <SVal string with no redundant blanks>

n head n
(head <SVal string>)
--> <SVal first token>

n tail n
(tail <SVal string>)
--> <SVal remaining tokens>

"lsp head"
(1sp_head <Sval string>)
--> <SVal first FastLisp token>

"lsp tail™"
(1sp_tail <SVal string>)
--> <SVal remaining FastLisp tokens>

n upper n
(upper <SVal string>)
--> <SVal upper case string>

"lower"
(lower <SVal string>)
--> <SVal lower case string>

"upper utfg8"
(upper <SVal UTF8 string>)
--> <SVal upper case UTF8 string>

"lower utfg"
(lower <SVal UTF8 string>)
--> <SVal lower case UTF8 string>

http://bmdfm.com

BMDFM
2025



Appendix A A.10 Built-in string functions

"is utf8char" |
| (is_utf8char <SVal string>)
| --> <IVal size of first UTF8 character or zero>

"ltrim utfg" |
| (ltrim utf8 <SVal string>)
| --> <SVal string with legal leading UTF8 character>

"rtrim utfg"
| (rtrim utf8 <SVal string>)
| --> <SVal string with legal ending UTF8 character>

"alltrim utfg"
| (alltrim utf8 <SVal string>)
| --> <SVal string with legal leading and ending UTF8 characters> |

nrayh |
| (rev <SvVal string>) |
| --> <SVal reverse ordered string>

|
| (padl <SVal string> <IVal length>)
| --> <SVal left justified string> |

(padr <SVal string> <IVal length>)
<SVal right justified string>

) — —
1
1
\"

(padc <SVal string> <IVal length>)

) —
1
1
\"

<SVal centered string>
_______________________________________________________________________ 1
| "time" |
| (time)
| --> <SVal current system time>

| "getenv" |

| (getenv <SVal environment variable name>)

| --> <SVal environment variable value>

- e .
BMDFM A-49

2025 http://bmdfm.com



A.11 Built-in asynchronous memory heap functions

Appendix A

A.11 Built-in asynchronous memory
heap functions

Argument types will be casted:

A-50

.
~

) — ) — ) — ) — ) — ) —

) —

"asyncheap create"
(asyncheap create <IVal size bytes>)
--> <IVal descriptor_or 0>

"asyncheap getaddress"
(asyncheap getaddress <IVal descriptor>)
--> <IVal address>

"asyncheap putint"

(asyncheap putint <IVal descriptor> <IVal offset> <IVal integer>) |

--> <IVal 1>

"asyncheap getint"
(asyncheap getint <IVal descriptor> <IVal offset>)
--> <IVal integer>

"asyncheap putfloat"

|
(asyncheap putfloat <IVal descriptor> <IVal offset> <FVal float>) |
|

--> <IVal 1>

"asyncheap getfloat"
(asyncheap getfloat <IVal descriptor> <IVal offset>)
--> <Fval float>

"asyncheap putstring"

(asyncheap putstring <IVal descriptor> <IVal offset> <SVal string>)

--> <IVal 1>

"asyncheap getstring"

(asyncheap getstring <IVal descriptor> <IVal offset> <IVal length>)

--> <SVal string>

http://bmdfm.com

BMDFM
2025



Appendix A A.11 Built-in asynchronous memory heap functions

| "asyncheap reallocate" |
| (asyncheap reallocate <IVal descriptor> <IVal new size bytes>) |
| --> <IVal new descriptor>

| "asyncheap replicate"
| (asyncheap replicate <IVal descriptors>)
| --> <IVal new descriptor>

_______________________________________________________________________ 1

| "asyncheap delete" |

| (asyncheap delete <IVal descriptor>)

| --> <IVal 1> |

- .
BMDFM A-51

2025 http://bmdfm.com



A.12 Built-in mapcar function Appendix A

A.12 Built-in mapcar function

"mapcar"

| (mapcar <SVal FastLisp function or compiled bytecode>)

| --> (<SVal preprinted info>

| <Val result of execution that can be list or tree as well>
| <IVal syntax error code>

| <SVal syntax error message>

| <IVal runtime error code>

| <SVal runtime error message>

| <SVal processed FastLisp function code>

| <SVal processed FastLisp function justified code>

| <SVal processed FastLisp function compiled bytecode>

| <SVal processed FastLisp function linked bytecode>

| <SVal processed FastLisp function decompiled bytecode>
| <FVal time spent seconds>

|

A-52 BMDFM
http://bmdfm.com 2025



Appendix A A.13 Built-in terminal capabilities functions

A.13 Bullt-in terminal capabilities
functions

Argument types will be casted:

| "reinit terminal®
| (reinit terminal <SVal terminal type or empty for default terminals) |
| --> <SVal terminal capabilities status>

"term type"
(term type)
--> <SVal TERM environment configured terminal name>

) —
—_—

"lines term"
(lines term)
--> <IVal terminal capability 1li>

) —
—_—

"columns term"
(columns_ term)
--> <IVal terminal capability co>

) —
—_—

"clrscr_ term"
(clrscr_term)
--> <SVal terminal capability cl>

) ——
—_—

"reverse term"
(reverse term)
--> <SVal terminal capability mr>

) —
—_—

"blink term"
(blink term)
--> <SVal terminal capability mb>

) —
—_—

"bold term"
(bold term)
--> <SVal terminal capability md>

) ——
—_—

BMDFM A-53
2025 http://bmdfm.com



A.13 Built-in terminal capabilities functions

Appendix A

A-54

| — —— ) — — —— ) — — —— ) — — ——

| — —

"normal term"
(normal term)
--> <SVal terminal capability me>

"hidecursor term"
(hidecursor term)
--> <SVal terminal capability vi>

"showcursor term"
(showcursor term)
--> <SVal terminal capability ve>

"gotocursor term"
(gotocursor term <IVal y coordinate> <IVal x coordinate>)
--> <SVal filled with coordinates terminal capability cm
_or unfilled terminal capability cm if input is negative>

"gotocursorl term"
(gotocursorl term <SVal unfilled terminal capability cm>
<IVal y coordinate> <IVal x coordinate>)
--> <SVal filled with coordinates terminal capability cm>

BMDFM

http://bmdfm.com

2025



Appendix A

A.14 Built-in constant and info functions

A.14 Built-in constant and info functions

) — ) — ) — ) — ) — ) — ) —

) —

(ee)

"gamma"
(gamma)
--> <FVal Euler Mascheroni constant gamma>

"prn_ integer fmt"
(prn_integer fmt)
--> <SVal preconfigured printf format for integer>

"prn float fmt"
(prn_float fmt)
--> <SVal preconfigured printf format for float>

"prn string fmt"
(prn_string fmt)
--> <SVal preconfigured printf format for string>

"version fstlisp"
(version fstlisp)
--> <SVal FastLisp version>

BMDFM

2025

http://bmdfm.com

A-55



A.14 Built-in constant and info functions

Appendix A

A-56

"version termcap"
(version termcap)
--> <SVal termcap library version>

"version strglib"
(version strglib)
--> <SVal string library version>

"version mempool"
(version mempool)
--> <SVal memory pool library version>

"compiled on"
(compiled on)
--> <SVal compilation related machine os kernel specific_ info>

"compiled by"
(compiled by)
--> <SVal compilation related machine compiler specific info>

"n cpuproc"
(n_cpuproc)
--> <IVal number of configured parallel processing units>

"id cpuproc"
(id cpuproc)
--> <IVal id of current parallel processing unit>

"n taskjob"
(n_taskjob)
--> <IVal number of maximal parallel task jobs>

"id taskjob"
(id taskjob)
--> <IVal id of current task job>

BMDFM

http://bmdfm.com

2025



Appendix A A.14 Built-in constant and info functions

"am I in the fastlisp module"
| (am I in the fastlisp module)
| --> <IVal true if running in the fastlisp module>

"am I in the BMDFMldr module" |
| (am I in the BMDFMldr module)
| --> <IVal true if running in the BMDFMldr module>

"am I in the BMDFMsrv module"
| (am I in the BMDFMsrv module)
| --> <IVal true if running in the BMDFMsrv module>

"am I in the CPUPROC module" |
| (am I in the CPUPROC module) |
| --> <IVal true if running in the CPUPROC module>

"am I in the multithreaded module" |
| (am I in the multithreaded module)
| --> <IVal true if running in the multithreaded module>

BMDFM A-57
2025 http://bmdfm.com



A.15 Built-in rise runtime error functions Appendix A

A.15 Built-In rise runtime error functions

Argument types will be casted:

| "set error" |

| (set_error) |

| --> <SVal error text>

. T .

| "rise error" |

| (rise_error) |

. T .

| "set error dbg" |

| (set_error dbg) |

| --> <SVal error text>

. T .

| "rise error dbg" |

| (rise_error dbg) |

- T T '

| "set error info"

| (set_error info <IVal error code> <SVal error_ text>)

| --> <SVal error text>

. T .

| "rise error info"

| (rise error info <IVal error code> <SVal error text>)

- e e .

| "set error info dbg"

| (set_error info dbg <IVal error code> <SVal error text>)

| --> <SVal error text>

. T .

| "rise error info dbg"

| (rise error info dbg <IVal error code> <SVal error text>)

- T e e e e e .

| "get error code"

| (get_error code) |

| --> <IVal error code> |

. T .

| "get error text™ |

| (get _error text) |

| --> <SVal error text>

. T .
A-58 BMDFM

http://bmdfm.com 2025



Appendix A

A.16 C Interface

A.16 C Interface

See cflp_udf.h/cflp_udf.c for details.

In order to simplify declaration constructions the following abbreviations are used

~

#define
#define
#define
#define
#define
#define
#define
#define

char
unsigned char
signed char

unsigned short int
signed short int
unsigned long int

signed long int
double

Each variableis stored in a universal structure that enables it to change data types
dynamically and to have asingle value or an array with different types of
members, thus supporting lists and trees.

BMDFM

2025

http://bmdfm.com

A-59



A.16 C Interface

Appendix A

The declaration of avariable of the universal structure type allocatesasingle

value on the stack and an array in the heap that is very convenient assuming most
variables store only single values. No memory overhead is needed for storing

arrays with members of the same type.

struct fastlisp dataf{

|

| UCH disable ptr; /* 1 stores value, 0 ptr to
| UCH single; /* 1 single value, 0 array
| UCH type; /* 0

| UCH arraytype; /* 0

| union{

| SLO ival; /* integer value */

| DFL fval; /* float value */

| } value;

| CHR *svalue; /* string value */

| ULO indices numb;/* number of indices in the
| UCH *aready tags;/* member flags 'OIFSZ' for
| union{

| struct fastlisp data *mix;/* array members
| SLO *ival; /* array members
| DFL *fval; /* array members
| CHR **gvalue; /* array members
| } array;

L

a variable possible

undef, 'I'int, 'F'float, 'S'string, 'Z'nil
undef, 'I'int, 'F'float, 'S'string, 'Z'nil

array */
arraytype!=0 */

of mixed types */
of integer type */
of float type */

of string type */

*/
*/
*/
*/

Thefirst argument is a pointer to the passed function arguments and the second

argument is a pointer to the result structure.

A-60
http://bmdfm.com

BMDFM

2025



Appendix A A.16 C Interface

Passed arguments can be obtained from inside the function via the following set:

/* get universal data structure (see ret val implementation below) */
void (*fcall) (const ULO*, struct fastlisp data*);

/* get integer or pointer value */
void ret ival (const ULO *dat ptr, SLO *targ);

void ret fval (const ULO *dat ptr, DFL *targ);

/* get string value */

|
|
|
|
|
|
| /* get float value */
|
|
|
| void ret sval (const ULO *dat ptr, CHR **targ);

Additionaly, there are:
- two helper functions to be called from each created user thread;
- two functions for copying and deleting the universal data structure;
- three callback functions;
- four info functions for the processing units and task jobs;
- five info functions for the modules;
- five functions to handle runtime errors.

/* helper functions to be called from each created user thread
(if this thread uses BMDFM functionality) */

/* copy the universal data structure */
void copy flp data(struct fastlisp data *dest,

const struct fastlisp data *source,

ULO indices numb); |
|
|
|

/* delete the universal data structure */
void free flp data(struct fastlisp data *ret dat);

BMDFM A-61
2025 http://bmdfm.com



A.16 C Interface

Appendix A

A-62

 —_

y —_—

—

/* called at startup */
void startup callback(void) ;

/* called at task job end */
void taskjob end callback(ULO id taskjob) ;

/* (user io <IVal> <SVal>) callee */
void user io callback(SLO usr_id, CHR **usr buff);

/* get the number of configured parallel processing units
('N_CPUPROC' configuration parameter) */
ULO get n cpuproc (void) ;

/* get ID of the current parallel processing unit
(within the range of [0; 'N CPUPROC'[) */
ULO get id cpuproc (void) ;

/* get the number of maximal parallel task jobs
('"N_IORBP' configuration parameter) */
ULO get n taskjob(void) ;

/* get ID of the current task job
(within the range of [0; 'N IORBP'[) */
ULO get id taskjob(void) ;

/* info functions for the modules */
UCH am I in the fastlisp module(void) ;
UCH am I in the BMDFMldr module (void) ;
UCH am I in the BMDFMsrv module (void) ;
UCH am I in the CPUPROC module (void) ;

UCH am I in the multithreaded module(void) ;

http://bmdfm.com

BMDFM
2025



Appendix A

A.16 C Interface

2 R R R R R R R R R NN ———————————————.

BMDFM
2025

/* check whether no runtime error occurred */
UCH noterror (void) ;

/* set runtime error */
CHR *set error (CHR **targ errtext);

/* rise runtime error */
void rise error(void) ;

/* set runtime error with dbg info */
CHR *set error dbg(CHR **targ errtext, const ULO *dat ptr);

/* rise runtime error with dbg info */
void rise error dbg(const ULO *dat ptr);

/* set runtime error with info */
CHR *set error info(UCH errcode, CHR **targ errtext,
const CHR *src_errtext);

rise runtime error wi info
/* ri ti ith info */
void rise error info(UCH errcode, const CHR *src_errtext);

/* set runtime error with info and with dbg info */
CHR *set error info dbg(UCH errcode, CHR **targ errtext,

const CHR *src_errtext, const ULO *dat ptr);

/* rise runtime error with info and with dbg info */

void rise error info dbg(UCH errcode, const CHR *src_ errtext,

const ULO *dat ptr);

/* get runtime error code */
UCH get error code(void) ;

/* get runtime error text */
CHR *get error text(CHR **targ errtext);

/* Reserved runtime error codes:
ECODE _RT INT DIVZERO
ECODE _RT INT MODZERO
ECODE RT FLOAT DIVZERO
ECODE_RT FLOAT POWER
ECODE RT FLOAT LOGARITHM
ECODE_RT FLOAT SQRT
ECODE RT AHEAP WRONGDESCR ECODE RT RESERVEDS
ECODE RT AHEAP OUTOFRANGE ECODE_RT RESERVED4
ECODE_RT WRONG FMT STRING 9 ECODE RT RESERVED3
ECODE RT VAR NOTINIT 10 ECODE_RT RESERVED2
ECODE RT ARR NOTINIT 11 ECODE _RT RESERVEDL
ECODE RT ARR MEMBSNOTINIT 12 ECODE_RT RESERVEDO

ECODE RT _ARR NEGINDEX
ECODE RT _ARR ZEROMEMB

ECODE RT _ARR WRONGINDICES
ECODE RT ARR TYPEMISMATCH

ECODE RT _RESERVED6

0N U s WN R

http://bmdfm.com

A-63



A.16 C Interface Appendix A

Thefinal step, which should be performed after a user C function is defined, isto
fill the instruction database according to the following structure:

| typedef struct{

| const CHR *fnc name; /* function name */

| const SSH operands; /* number of arguments */

| const UCH ret type; /* result type: 'I', 'F', 'S', 'z' */
| const UCH *op_ type; /* flags 'IFSZ' for every argument */
| const fcall func ptr; /* pointer to the function */
| } INSTRUCTION STRU;

See an example of auser defined C function below. Passed function arguments are
obtained sequentially through the incremented "dat_ptr". Internal callsto
"ret_ival", "ret_fval" and "ret_sva" provide dynamic type casting if required. A
direct "fcall" function invocation omits the dynamic casting and returns a
universal data structure.

Finally, "my_function™ is registered in the instruction database. The
corresponding record states that the function has five arguments and returns an
integer value. Argument types are integer, integer, float, string and integer

| "my function" |
| (my function <IVal> <IVal> <FVal> <SVal> <IVals>)
| --> <IVal> |

void my function(const ULO *dat ptr, struct fastlisp data *ret dat){
const ULO *tmp ptr;
SLO n,result=0;
CHR *str=NULL;
DFL *f array,koef;
struct fastlisp data dat={0,1,0,0,{0},NULL, 1, NULL, {NULL}};

ret ival(dat ptr+l, (SLO*)&f array); /* argl: ptr (f array) */
ret fval (dat ptr+2, &koef) ; /* arg2: float (koef) */
ret sval (dat ptr+3,&str); /* arg3: string (str) */
tmp ptr=*((ULO**) (dat ptr+4)); /* arg4: any data as */

(*(fcall) *tmp_ptr) (tmp ptr+l,&dat); /* univ. data (dat) */

|
|
|
|
|
|
|
| ret ival(dat ptr,&n); /* arg0: integer (n) */
|
|
|
|
|
|

A-64 BMDFM
http://bmdfm.com 2025



Appendix A A.16 C Interface

if (noterror()) {
/* data processing to compute “result': */
ret dat->single=1;
ret dat->type='I"';
ret dat->value.ival=result;

/* or an error occurred: */
rise error info dbg(USER DEFINED UNRESERVED ERRCODE, "ERROR TEXT",
dat ptr);

if (dat.disable ptr)
free flp data(&dat);
free string(&str);

return;

}

/* Users may implement their own ret val() 1like:

void ret val(const ULO *dat ptr, struct fastlisp data *ret dat){
dat ptr=*((ULO**)dat ptr);
(* (fcall) *dat_ptr) (dat ptr+l,ret dat);

return;
or like:
void ret val(const ULO *dat ptr, struct fastlisp data *ret dat){
if (noterror()){
dat ptr=*((ULO**)dat ptr);
(* (fcall) *dat_ptr) (dat ptr+l,ret dat);
return;
in order to simplify reading universal data args, e.g.:
ret val (dat ptr+4,&dat);
*/
INSTRUCTION STRU INSTRUCTION_SET[]={
/* .. */
{“MY_FUNCTION",S,'I',(UCH*)"IIFSI",&my_function},
/* .. */
const ULO INSTRUCTIONS=
sizeof (INSTRUCTION SET)/sizeof (INSTRUCTION STRU) ;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| }
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BMDFM A-65
2025 http://bmdfm.com



A.16 C Interface

Appendix A

And last but not least is string processing. Internally, strings are stored in the
following format:

A-66

~

CHR
CHR
CHR
CHR
CHR
CHR
UCH
ULO
ULO
ULO
UCH
SCH
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR
CHR

*mk std buff (CHR **buff, ULO size);

*mk std buff secure(CHR **buff, ULO size);

*mk fst buff (CHR **buff, ULO size);

*mk fst buff secure(CHR **buff, ULO size);

*get std buff (CHR **targ, const CHR *buff);

*get std buff secure(CHR **targ, const CHR *buff);
notempty (const CHR *string) ;

len(const CHR *string):;

at (const CHR *pattern, const CHR *among) ;

rat (const CHR *pattern, const CHR *among) ;

cmp (const CHR *stringl, const CHR *string2):;
cmp s (const CHR *stringl, const CHR *string2);

*equ (CHR **targ, const CHR *source);

*equ secure(CHR **targ, const CHR *source) ;

*equ num(CHR **targ, SLO num) ;

*equ unum(CHR **targ, ULO num) ;

*equ numhex (CHR **targ, ULO num) ;

*equ fnum(CHR **targ, DFL fnum);

*cat (CHR **targ, const CHR *source);

*lcat (CHR **targ, const CHR *source);

*space (CHR **targ, ULO pos):;

*replicate (CHR **targ, const CHR *source, ULO num);
*left (CHR **targ, const CHR *source, ULO pos):
*leftr (CHR **targ, const CHR *source, ULO posr);
*right (CHR **targ, const CHR *source, ULO pos);
*rightl (CHR **targ, const CHR *source, ULO posl):;
*substr (CHR **targ, const CHR *source, ULO from, ULO pos):;
*strtran (CHR **targ, const CHR *source, const CHR *pattern,

const CHR *subst);

CHR
CHR
CHR
CHR
CHR
CHR
CHR

*1ltrim(CHR **targ, const CHR *source);
*rtrim (CHR **targ, const CHR *source);
*alltrim (CHR **targ, const CHR *source) ;
*pack (CHR **targ, const CHR *source);
*head (CHR **targ, const CHR *source);
*tail (CHR **targ, const CHR *source);
*1sp head(CHR **targ, const CHR *source);

http://bmdfm.com

BMDFM
2025



Appendix A

A.16 C Interface

y —

SLO

*1sp tail (CHR **targ, const CHR *source);
*upper (CHR **targ, c
*lower (CHR **targ, c
*upper utf8 (CHR **targ, const CHR *source) ;
*lower utf8 (CHR **targ, const CHR *source) ;
is utf8char (const CHR *utf8char);

*ltrim utf8 (CHR **targ, const CHR *source) ;
*rtrim utf8 (CHR **targ, const CHR *source) ;
*alltrim utf8 (CHR **targ, const CHR *source) ;
*rev (CHR **targ, con

*padl (CHR **targ,
*padr (CHR **targ,
*padc (CHR **targ,

*strraw (CHR **targ,
*strunraw (CHR **targ, const CHR *source) ;

*strdump (CHR

**targ,

onst CHR *source) ;
onst CHR *source) ;

st CHR *sgource);

const CHR *source, ULO width);
const CHR *source, ULO width);
const CHR *source, ULO width);

const CHR *source);

const CHR *source) ;

*string time (CHR **targ);
*strings version(CHR **targ);

*sch2str (CHR
*ssh2str (CHR
*slo2str (CHR
*ptr2str (CHR
*dfl2str (CHR

**targ,
**targ,
**targ,
**targ,
**targ,

SCH num) ;
SSH num) ;
SLO num) ;
void *ptr);
DFL num) ;

str2sch(const CHR *string) ;
str2ssh(const CHR *string);
str2slo(const CHR *string);
void *str2ptr (const CHR *string);
DFL str2dfl (const CHR *string):;
ULO crcsum(const CHR *string):;
CHR *free string(CHR **targ) ;

CHR *str0=NULL, *str1=NULL, *str2=NULL;

get std buff (&str0,"To be or not to be");
get std buff (&strl, "be");

get std buff (&str2, "compute") ;

upper (&str0, strtran(&str0,str0,strl,str2));
printf (" ~%s'\n",str0);
free string(&stro0);
free string(&strl);
free string(&str2);

 —_

BMDFM
2025

/* Result: “TO COMPUTE OR NOT TO COMPUTE'

http://bmdfm.com

*/

A-67



A.16 C Interface Appendix A

This page is intentionally left blank.

A-68 BMDFM
http://bmdfm.com 2025



Appendix B
Example of Application
Programming

Thisisasimple application example, which computes direct and inverse 2D
nonseparative discrete Hartley transforms (DHT and IDHT) according to the
computation flow shown in Figure B-1.

v

Generate input
array sequence

P

H[pq, q] = Sfx[n m]-cas[% -pn+ 2}\4_7[ q- m}

=0 m=0 Compute DHT §'
p=0.N-1 g=0M-1 * P
c
1 2
Hl-m‘[pﬂq]ZWH[P,Q] Compute IDHT a
Vv
Compare

Figure B-1. Computation example of discrete Hartley transforms

BMDFM B-69
2025 http://bmdfm.com



Appendix B

Four functions from Figure B-1 can be implemented in C asfollows:

void func

}

SLO i,j,n,m;
DFL *array;
ret ival (dat_ptr, (SLO*)&array) ;
ret ival (dat_ptr+l,é&n) ;
ret ival (dat_ptr+2,&m) ;
if (noterror()) {

for (1=0;1i<n;i++)

for (j=0; j<m; j++)
* (array+i*m+j) =1.*rand () /RAND MAX;

ret dat->single=1;

ret _dat->type='I";

ret dat->value.ival=(SLO)array;

}

return;

dhtpipel0 generate(const ULO *dat ptr, struct

fastlisp data *ret dat) {

void func dhtpipe0 dht(const ULO *dat ptr, struct fastlisp data *ret dat)

}

B-70

SLO i,j,p,9,n,m;

DFL *target array, *source array,pi,cl,sl,sum, tmp;

ret ival (dat_ptr, (SLO*)&target array) ;
ret ival (dat ptr+l,&n) ;
ret ival (dat_ptr+2,&m) ;
ret ival (dat_ptr+3, (SLO*) &source_array) ;
if (noterror())
pi=3.1415926535897932;
cl=2*pi/n;
sl=2*pi/m;
for (p=0;p<n;p++)
for (g=0; g<m; g++) {
sum=0;
for(i=0;i<n;i++)
for(j=0;j<m; j++)

sum+= (* (source_array+i*m+j) * (cos (tmp=cl*p*i+sl*g*j)+sin(tmp))) ;

* (target array+p*m+q) =sum;
}
ret_dat->single=1;
ret dat->type='I";
ret dat->value.ival=(SLO) target array;

}

return;

http://bmdfm.com

BMDFM
2025



Appendix B

void func dhtpipe0 idht(const ULO *dat ptr, struct fastlisp data *ret dat)
SLO 1i,3j,p,q,n,m;
DFL *target_array,*source_array,pi,cl,sl,sum,tmp;
ret ival(dat ptr, (SLO*) &target array);
ret ival(dat_ptr+l,é&n);
ret ival(dat_ptr+2,&m);
ret ival(dat ptr+3, (SLO*)&source_ array) ;

if (noterror ())
Pi=3.1415926535897932;
cl=2*pi/n;
s1=2*pi/m;

for (p=0;p<n;p++)
for (g=0;g<m;g++) {
sum=0 ;
for (i=0;i<n;i++)
for (j=0;j<m;j++)
sum+= (* (source_array+i*m+j)* (cos(tmp=cl*p*i+sl*g*j) +sin (tmp))) ;
* (target array+p*m+q) =sum/n/m;
}
ret dat->single=1;
ret dat->type='I";
ret_dat->value.ival=(SLO) target array;

}

return;

}

void func dhtpipel compare(const ULO *dat ptr, struct fastlisp data *ret dat) {
SLO result=1,n,m;
DFL *arrayO, *arrayl;
ret ival(dat ptr, (SLO*) &arrayO) ;
ret ival(dat ptr+l, (SLO*)&arrayl) ;
ret ival(dat_ptr+2,é&n);
ret ival(dat ptr+3,&m);
if (noterror ()) {
f ((fabs(*array0-*arrayl) >1.e-10)
| | (Eabs (* (array0+n*m-1)-* (arrayl+n*m-1))>1.e-10))
result=0;
ret_dat->single=1;
ret dat->type='I"';
ret_dat->value.ival=result;

return;

}

INSTRUCTION STRU INSTRUCTION_ SET[

1=
{”DHTPIPEO_GENERATE" 3,'I' (UCH*)"III", &func dhtpipeld generate},
{"DHTPIPEO DHT", 'I', (UCH*)"IIII",&func dhtpipe0 dht},
{"DHTPIPEO IDHT", 'I', (UCH*)"IIII",&func dhtpipe0 idht},
{"DHTPIPEO COMPARE", ,’I’,(UCH*)"IIII”,&funcggdhtpipeoicompare}

}i

const ULO INSTRUCTIONS=sizeof (INSTRUCTION SET)/sizeof (INSTRUCTION STRU) ;

BMDFM B-71
2025 http://bmdfm.com



Appendix B

After recompilation of the virtual machine the following trivial implementation of
the function main() will work properly. Please notice two things:

® Some speculative SMP RISC architectures require aligned memory addresses for
alocated float arraysin the shared memory pool.

® Accessto the asynchronous heaps can be synchronized e.g. via some additional
synchronization helper variables that create artificial dataflow dependencies
enabling parallel function calls where possible:

o every pointer variable addr” has a corresponding synchronization hel per
variable“_sync”;

o an“_addr” pointer variable to aread-only area can be passed directly to a
function call;

o an“_addr” pointer variable to amodified areais passed to afunction call
being dependent on the corresponding “_sync” helper variable;

o after thefunction call isfinished, both “_sync” helper variables (for all

pointersinvolved in thecall) and “_addr” pointer variables (only for pointers
to the modified areas) are re-assigned.

# dhtpipe0.flp

# Pipeline calculation of the 2D nonseparative Hartley transform.
#

# Direct Hartley transform:

#

# N-1 M-1 2P1 2P1

# H[p,q] = E E x[n,m] cas ( --- pn + --- gm ), p=0..N-1, g=0..M-1.
# n=0 m=0 N M

#

# Inverse Hartley transform:

#

# 1

# Hinvlp,q]l = --- Hlp,q].

# N*M

(progn # main/()

(outf
"Pipeline calculation of the 2D nonseparative Hartley transform.\n\n" 0)

B-72 BMDFM
http://bmdfm.com 2025



Appendix B

(setg m (ival (accept "M-value of M*N-matrix: ")))

(setg n (ival (accept "N-value of M*N-matrix: ")))

(setq numb (ival (accept "How many input data packs: ")))

(setq arrays _size (* (++ (* m n)) (setq floatlen (len (dump f2s 0.)))))

(for i 1 1 numb (progn # main pipeline loop
(outf "Sequence %1d:" i)

H#H B H# HH AR AR AR AR AR A R R R A R R A A

# 1. This is the way how we create an input array. #

# 1.1. This is the way how we get address. #

H#H B H# HH AR AR R AR AR AR A R A R R A R R A A

(setq inp array addr (setq inp array addr
(asyncheap create arrays size)))

T B A T T A A A A A R A A R A R A R 3 A R AR A R A B
# 1.2. This is the way how we align the address. #
# (optional: float might be misaligned on some architectures). #
T A A 1A A A A A R A A3 R A R A R 3 A R AR A R A #E
(setq inp array sync (& 0
(setq inp array addr
(+ inp array addr (- floatlen (iabs (% inp array addr floatlen)))))

))

T A 1A 1 1 T A B B T T T A A A A A
# 2. This is the way how we generate input sequence. #
HH#H B H# A7 A7 AR AR AR A A A R R R A A A
(setq inp array sync (& 0
(setq inp array addr
(dhtpipe0 generate (| inp array sync inp array addr) n m))
))

HEHHHH# AR AR A B R AR AR AR AR AR R A R A R

# 3. This is the way how we create a DHT array. #

# 3.1. This is the way how we get address. #

HEHHHH AR AR A B AR AR AR AR AR A A R A R

(setq dht array addr (setq dht array addr
(asyncheap create arrays size)))

HH#H B H# AR AR AR AR AR A A R R R A A R A A A R
# 3.2. This is the way how we align the address. #
# (optional: float might be misaligned on some architectures). #
HH#H B H AR AR AR AR AR AR A R R R A A R A A A R
(setq dht array sync (& 0
(setq dht array addr
(+ dht array addr (- floatlen (iabs (% dht array addr floatlen)))))

))

BMDFM B-73
2025 http://fbmdfm.com



Appendix B

HH#H B HAH A RS 1 B R AR R R AR A R
# 4. This is the way how we compute DHT. #
HHEH RIS AH A A A B RS R RS R
(setq dht array sync (setq inp array sync (& 0
(setq dht array addr
(dhtpipe0 dht (| dht array sync dht array addr) n m inp array addr))
)))

HHEH RIS T T 1 R RS R S A R R S

# 5. This is the way how we create an IDHT array. #

# 5.1. This is the way how we get address. #

HHE AR T 1 1 R R R R S A R R S

(setq idht array addr (setq idht array addr
(asyncheap create arrays_size)))

HHE AR R AH A A 1 R R A R A T R R R R R S R A i

# 5.2. This is the way how we align the address. #

# (optional: float might be misaligned on some architectures). #

HHE AR R A A A R R AR R R R R R R S R R i
(setq idht array sync (& 0

(setq idht array addr
(+ idht array addr (- floatlen (iabs (% idht array addr floatlen)))))

))

H#H B HHH A RS B B R AR AR R R R
# 6. This is the way how we compute IDHT. #
H#H B H A A RS R R AR R S A R
(setq idht array sync (setq dht array sync (& O
(setq idht array addr
(dhtpipe0 idht (| idht array sync idht array addr) n m dht array addr))
)))

HHEH RIS AH AR A R R R R R R i
# 7. This is the way how we compare input sequence with #
# IDHT (DHT (input sequence)) . #
HHEH RS AH A A 1 R R AR R R R R R i
(setq inp array sync (setq idht array sync (& 0
(setq cmp_res (dhtpipe0 compare inp array addr idht array addr n m))
)))
(outf " %s.\n" (if cmp res "Ok" "Fail"))

HEH AR HHH RS HR AR AR AR R R R A R A
# 8. This is the way how we release memory. #
L g dsd g g e s s s

(asyncheap delete (| inp array sync inp array addr ))
(asyncheap delete (| dht array sync dht array addr ))
(asyncheap delete (| idht array sync idht array addr ))

)) # “end progn” of main pipeline loop; "“end for” of main pipeline loop
nn

) # “end progn” of main()

B-74 BMDFM
http://bmdfm.com 2025



Appendix B

The above version of the application exploits a coarse-grain parallelism of the
iterations of the main pipelineloop. In the next version of the same application the
computation loops written in C are interleaved. This modification enables using a
coarse-grain parallelism within each iteration of the main pipeline loop.

void func dhtpipel generate(const ULO *dat ptr, struct fastlisp data *ret dat) {

}

void func

}

SLO step,interleave,i,j,n,m;
DFL *array;
ret ival (dat_ ptr, (SLO*)&array) ;
ret _ival (dat_ptr+l,&step) ;
ret_ival (dat_ptr+2,&interleave);
ret ival (dat_ptr+3,&n);
ret ival (dat_ptr+4,&m) ;
if (noterror())
for (i=step;i<n;i+=interleave)
for (j=0;j<m; j++)
* (array+i*m+j) =1.*rand () /RAND MAX;
ret dat->single=1;
ret dat->type='I";
ret_dat->value.ival=0;

}

return;

dhtpipel dht(const ULO *dat ptr,
SLO step,interleave,i,j,p,q,n,m;

struct fastlisp data *ret dat) {

DFL *target_array,*source_array,pi,cl,sl,sum,tmp;

ret ival (dat ptr, (SLO*)&target array) ;
ret ival (dat_ptr+l,&step) ;

ret_ival (dat_ptr+2,&interleave);

ret ival (dat_ ptr+3,&n);

ret ival (dat_ptr+4,&m) ;

ret ival (dat_ptr+5, (SLO*) &source_array) ;

if (noterror()) {
pi=3.1415926535897932;
cl=2*pi/n;
sl=2*pi/m;

for (p=step;p<n;p+=interleave)
for (g=0; g<m; g++) {
sum=0;
for(i=0;i<n;i++)
for(j=0;j<m; j++)

sum+= (* (source_array+i*m+j) * (cos (tmp=cl*p*i+sl*g*j)+sin(tmp))) ;

* (target array+p*m+q) =sum;
}
ret_dat->single=1;
ret dat->type='I";
ret_dat->value.ival=0;

}

return;

BMDFM

2025

B-75

http://bmdfm.com



Appendix B

void func dhtpipel idht (const ULO *dat ptr, struct fastlisp data *ret dat)
SLO step,interleave, i, j,p,q,n,m;
DFL *target_array,*source_array,pi,cl,sl,sum,tmp;
ret ival (dat_ ptr, (SLO*)&target array) ;
ret ival (dat_ptr+l,&step) ;
ret_ival (dat_ptr+2,&interleave);
ret ival (dat ptr+3,&n);
ret ival (dat_ ptr+4,&m) ;
ret ival (dat_ptr+5, (SLO*) &source_array) ;

if (noterror()){
pi=3.1415926535897932;
cl=2*pi/n;
sl=2%pi/m;

for (p=step;p<n;p+=interleave)
for (g=0; g<m; g++) {
sum=0;
for(i=0;i<n;i++)
for(j=0;j<m; j++)
sum+= (* (source_array+i*m+j) * (cos (tmp=cl*p*i+sl*g*j) +sin (tmp))) ;
* (target_array+p*m+q) =sum/n/m;
}
ret dat->single=1;
ret dat->type='I";
ret_dat->value.ival=0;

}

return;

}

INSTRUCTION STRU INSTRUCTION_SET[]:{

/).

{”DHTPIPEl_GENERATE”,5,'I',(UCH*)”IIIII”, &func__dhtpipe1_generate},
{”DHTPIPEl_DHT”, 6,'I',(UCH*)”IIIIII”,&func__dhtpipel_dht},
{"DHTPIPEl_IDHT", 6,’I’,(UCH*)”IIIIII",&funcg%dhtpipeliidht},

/).
¥

const ULO INSTRUCTIONS=sizeof (INSTRUCTION SET) /sizeof (INSTRUCTION STRU) ;

In the function main() all interleaved functions are called in away of the threaded
loops:

B-76 BMDFM
http://bmdfm.com 2025



Appendix B

# dhtpipel.flp

# Pipeline calculation of the 2D nonseparative Hartley transform.
#

# Direct Hartley transform:

#

# N-1 M-1 2P1 2P1

# Hlp,q] = E E x[n,m] cas ( --- pn + --- gn ), p=0..N-1, g=0..M-1.
# n=0 m=0 N M

#

# Inverse Hartley transform:

#

# 1

# Hinvi[p,ql = --- H[p,ql.

# N*M

(progn # main()

(outf

"Pipeline calculation of the 2D nonseparative Hartley transform.\n\n" 0)
(setq m (ival (accept "M-value of M*N-matrix: ")))
(setq n (ival (accept "N-value of M*N-matrix: ")))
(setq numb (ival (accept "How many input data packs: ")))
(setq arrays size (* (++ (* m n)) (setq floatlen (len (dump f2s 0.)))))
(setq threads (if (< n (n_cpuproc)) n (n_cpuproc)))

(for i 1 1 numb (progn # main pipeline loop
(outf "Sequence %1d:" i)

H B A AR RS AR AR R B R R A A R R R

# 1. This is the way how we create an input array. #

# 1.1. This is the way how we get address. #

HEHH# A AR RS AR AR A R A B R R A AR R

(setq inp array addr (setq inp array addr
(asyncheap create arrays _size)))

i e s s s b g e e
# 1.2. This is the way how we align the address. #
# (optional: float might be misaligned on some architectures). #
i s s s s s g e e i
(setq inp array sync (& 0
(setq inp array addr
(+ inp array addr (- floatlen (iabs (% inp array addr floatlen)))))

))

BMDFM B-77
2025 http://fbmdfm.com



Appendix B

HBHH# A B R AR AR AR R R R R R R R

# 2. This is the way how we generate input sequence. #

HEBHHH RS BB BB AR AR R AR A AR AR SR R

(setq inp array addr (| inp array sync inp array addr))

(for thread 1 1 threads

(setq inp array sync (+ inp array sync
(dhtpipel generate inp array addr (-- thread) threads n m)))

)

(setq inp array addr (| inp array sync inp array addr))

HBHH# BB AR AR AR RS AR AR R R

# 3. This is the way how we create a DHT array. #

# 3.1. This is the way how we get address. #

HBHH#HH # BB AR AR AR RS AR AR R R

(setq dht array addr (setq dht array addr
(asyncheap create arrays size)))

HHBHHH AR BB RS TR AR AR R R AR AR R R
# 3.2. This is the way how we align the address. #
# (optional: float might be misaligned on some architectures). #
HHBH# AR BB RS TR AR AR R R AR AR A S S
(setq dht array sync (& 0
(setqg dht array addr
(+ dht array addr (- floatlen (iabs (% dht array addr floatlen)))))

))

HERH#HH RS BB R AR R AR R AR AR AR R S
# 4. This is the way how we compute DHT. #
HERHHH R RS BB R AR R AR R AR AR AR S
(setq dht array addr (| dht array sync dht array addr))
(for thread 1 1 threads

(setq dht array sync (+ dht array sync

(dhtpipel dht dht array addr (-- thread) threads n m inp array addr)))

)
(setq inp array sync dht array sync)
(setq dht array addr (| dht array sync dht array addr))

HHBH#HH RS BB RS T R AR AR R R R A S

# 5. This is the way how we create an IDHT array. #

# 5.1. This is the way how we get address. #

HHBH# RS B B R RS T R AR AR A R R A S

(setq idht array addr (setq idht array addr
(asyncheap create arrays size)))

B-78 BMDFM
http://bmdfm.com 2025



Appendix B

HEH B AR A1 B A R A B 7 R R R i R

# 5.2. This is the way how we align the address. #

# (optional: float might be misaligned on some architectures). #
HEH B AR ARG B A A B R TR R R S i
(setq idht array sync (& 0

(setq idht array addr
(+ idht array addr (- floatlen (iabs (% idht array addr floatlen)))))

))

HEH R AR A1 B R R A A R
# 6. This is the way how we compute IDHT. #
HHEHH A AR S B A A RS A R A
(setq idht array addr (| idht array sync idht array addr))
(for thread 1 1 threads
(setq idht array sync (+ idht array sync (dhtpipel idht
idht array addr (-- thread) threads n m dht array addr)))
)
(setqg dht array sync idht array sync)
(setq idht array addr (| idht array sync idht array addr))

HHEH # A7 H RS A B R R B R AR AR R R R R AR AR
# 7. This is the way how we compare input sequence with #
# IDHT (DHT (input_seguence) ). #
HEH #HH#H RS B R AR A B R AR A R R R R R AR AR
(setq inp array sync (setq idht array sync (& 0

(setq cmp_res (dhtpipe0 compare inp array addr idht array addr n m))
)))
(if cmp res

(outf " Ok.\n" nil)

(outf " Fail.\n" nil)
)

HHEH #HH#H RS B R A A R SR AR R R R
# 8. This is the way how we release memory. #

HAR R HH AR BB R R S R R R R R

(asyncheap delete (| inp array sync inp array addr ))
(asyncheap delete (| dht array sync dht array addr ))
(asyncheap delete (| idht array sync idht array addrs ))

)) # “end progn” of main pipeline loop; “end for” of main pipeline loop
mn

) # “end progn” of main()

BMDFM B-79
2025 http://fbmdfm.com



Appendix B

This page is intentionally left blank.

B-80 BMDFM
http://bmdfm.com 2025



Appendix C
List of Target Deployments

The target deployments are listed for the following release of BMDFM:

e BMDFM v.5.9.9 R25 (Revision 2025), build 20250613.

=== ==============================+4==S==========================================
Deployment | Build Details
=== ==============================4==S==========================================
x86 WindowsCygnus 32 gccV291l gcc version egcs-2.91.57 19980901 (egcs-1.
1 release) as [PE32 executable (console) I
ntel 80386, for MS Windows] at systime Fri
Jun 13 13:01:07 CEST 2025 on [CYGWIN NT-6
.1 WINDOWS7VM 20.1 (0.3/1/1) 1998-12-3 20:
39:18 i686]

x86_WindowsCygwin 32 gccV640 gcc version 6.4.0 (GCC) as [PE32 executabl
e (console) Intel 80386 (stripped to exter
nal PDB), for MS Windows] at systime Fri J
un 13 13:01:18 CEST 2025 on [CYGWIN NT-6.1
-WOW WINDOWS7VM 2.10.0(0.325/5/3) 2018-02-
02 15:21 1686 Cygwinl]

x86 WindowsUWIN 32 gccV295 gcc version 2.95.2 19991024 (release) as [
win32 386 executable] at systime Fri Jun 1
3 13:01:26 CEST 2025 on [UWIN-XP WINXPVM 3
.1-5.1 2600 i586]

x86_WindowsSFU-SUA 32 gccV33 gcc version 3.3 as [Windows NT PE format (
EXE) , dynamically linked executable Intel
Posix-CUI] at systime Fri Jun 13 13:01:25
CEST 2025 on [Interix WINDOWS7VM 6.1 10.0.
7063.0 x86]

x86_Linux 32 gccV485 gcc version 4.8.5 20150623 (Red Hat 4.8.5-
4) (GCC) as [ELF 32-bit LSB executable, In
tel 80386, version 1 (SYSV), dynamically 1
inked (uses shared libs), for GNU/Linux 2.
6.32, stripped] at systime Fri Jun 13 13:0
1:13 CEST 2025 on [Linux RedHatELS72VM 3.1
0.0-327.e17.x86 64 #1 SMP Thu Oct 29 17:29
:29 EDT 2015 x86 64]

x86 Linux 32 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 32-bit LSB executable, Intel 8
0386, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 3.2.0,
stripped] at systime Fri Jun 13 13:01:15 C
EST 2025 on [Linux Linux64core 5.10.0-6-am
dé64 #1 SMP Debian 5.10.28-1 (2021-04-09) x
86 641

BMDFM C-81
2025 http://bmdfm.com



Appendix C

x86 Linux 32 clangV1101 Debian clang version 11.0.1-2 as [ELF 32-b
it LSB executable, Intel 80386, version 1
(8YSV), dynamically linked (uses shared 1li
bs), for GNU/Linux 3.2.0, stripped] at sys
time Fri Jun 13 13:01:18 CEST 2025 on [Lin
ux Linux64core 5.10.0-6-amd64 #1 SMP Debia
n 5.10.28-1 (2021-04-09) x86 64]

x86_Linux 32 iccVxe2019u3 icc version 19.0.3.199 (gcc version 4.8.5
compatibility) Intel(R) C Intel(R) 64 Comp
iler for applications running on Intel (R)
64, Version 19.0.3.199 Build 20190206 (Cop
yright (C) 1985-2019 Intel Corporation. Al
1 rights reserved.) as [ELF 32-bit LSB exe
cutable, Intel 80386, version 1 (SYSV), dy
namically linked (uses shared 1libs), for G
NU/Linux 2.6.32, stripped] at systime Fri
Jun 13 13:01:17 CEST 2025 on [Linux RedHat
ELS72VM 3.10.0-327.el7.x86 64 #1 SMP Thu O
ct 29 17:29:29 EDT 2015 x86 641

x86 FreeBSD 32 gccV920 gcc version 9.2.0 (FreeBSD Ports Collectio
n) as [ELF 32-bit LSB executable, Intel 80
386, version 1 (FreeBSD), dynamically link
ed (uses shared libs), for FreeBSD 12.1, F
reeBSD-style, stripped] at systime Fri Jun

13 13:01:14 CEST 2025 on [FreeBSD FreeBSD
12VM 12.1-RELEASE FreeBSD 12.1-RELEASE r35
4233 GENERIC amdé64]

x86 FreeBSD 32 clangV801l FreeBSD clang version 8.0.1 (tags/RELEASE
801/final 366581) (based on LLVM 8.0.1) as

[ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), dynamically linked (u
ses shared libs), for FreeBSD 12.1l, FreeBS
D-style, stripped] at systime Fri Jun 13 1
3:01:12 CEST 2025 on [FreeBSD FreeBSD12VM
12.1-RELEASE FreeBSD 12.1-RELEASE r354233
GENERIC amdé64]

x86 OpenBSD 32 gccV830 gcc version 8.3.0 (GCC) as [ELF 32-bit LSB
executable, Intel 80386, version 1, dynam
ically linked (uses shared libs), for Open
BSD 6.6, stripped] at systime Fri Jun 13 1
3:01:39 CEST 2025 on [OpenBSD OpenBSD66VM.
ESXsrv.net 6.6 (GENERIC.MP) #304: Sat Oct

12 11:18:21 MDT 2019 deraadt@i386.openbsd.
org:/usr/src/sys/arch/i386/compile/GENERIC
.MP 1i386]

x86 OpenBSD 32 clangV80l clang version 8.0.1 (tags/RELEASE 801/fina
1) (based on LLVM 8.0.1) as [ELF 32-bit LS
B executable, Intel 80386, version 1, dyna
mically linked (uses shared libs), for Ope
nBSD 6.6, stripped] at systime Fri Jun 13
13:01:33 CEST 2025 on [OpenBSD OpenBSD66VM
.ESXsrv.net 6.6 (GENERIC.MP) #304: Sat Oct
12 11:18:21 MDT 2019 deraadt@i386.openbsd
.org:/usr/src/sys/arch/i386/compile/GENERI
C.MP i386]

C-82 BMDFM
http://bmdfm.com 2025



Appendix C

x86 NetBSD 32 gccV830 gcec version 8.3.0 (GCC) as [ELF 32-bit LSB
executable, Intel 80386, wversion 1 (SYSV)
, dynamically linked (uses shared libs), £
or NetBSD 8.1, stripped] at systime Fri Ju
n 13 13:01:15 CEST 2025 on [NetBSD NetBSD8
1VM.ESXsrv.net 8.1 NetBSD 8.1 (GENERIC) #0
: Fri May 31 08:43:59 UTC 2019 mkrepro@mkr
epro.NetBSD.org:/usr/src/sys/arch/amdé64/co
mpile/GENERIC amd64]

x86 NetBSD 32 clangV900 clang version 9.0.0 (tags/RELEASE 900/fina
1) (based on LLVM 9.0.0) as [ELF 32-bit LS
B executable, Intel 80386, version 1 (SYSV
), dynamically linked (uses shared libs),
for NetBSD 8.1, stripped] at systime Fri J
un 13 13:01:20 CEST 2025 on [NetBSD NetBSD
81lVM.ESXsrv.net 8.1 NetBSD 8.1 (GENERIC) #
0: Fri May 31 08:43:59 UTC 2019 mkrepro@mk
repro.NetBSD.org: /usr/src/sys/arch/amd64/c
ompile/GENERIC amdé64]

x86 MacOS 32 clangV702 Apple LLVM version 7.0.2 (clang-700.1.81)
as [Mach-O executable i386] at systime Fri
Jun 13 13:01:16 CEST 2025 on [Darwin MacI
ntel 14.5.0 Darwin Kernel Version 14.5.0:
Tue Apr 11 16:12:42 PDT 2017; root:xnu-278
2.50.9.2.3~1/RELEASE X86 64 x86 64]

x86_SunOS_ 32 ccV510 cc: Sun C 5.10 SunOS_1i386 Patch 142363-09
2012/08/15 as [ELF 32-bit LSB executable 8
0386 Version 1 [FPU], dynamically linked,
stripped] at systime Fri Jun 13 13:01:18 C
EST 2025 on [SunOS SunOSx86 5.11 11.1 i86p
c i386 Solaris]

x86_SunOS_32 gccV343 gcc version 3.4.3 (csl-s0l210-3_4-branch+s
ol rpath) as [ELF 32-bit LSB executable 80
386 Version 1, dynamically linked, strippe
d] at systime Fri Jun 13 13:01:02 CEST 202
5 on [SunOS SunOSx86 5.11 11.1 i86pc 1386
Solaris]

x86 UnixwareSCO 32 ccsV42 Optimizing C Compilation System (CCS) 4.2
05/13/08 (uw714mp4.bl3h) as [ELF 32-bit LS
B executable 80386, dynamically linked, st
ripped, no debug (SVR5 ABI)] at systime Fr
i Jun 13 13:12:06 CET 2025 on [UnixWare un
ixware 5 7.1.4 i386 x86at SCO UNIX SVRS5]

x86_UnixwareSCO_32 gccV295 gcc version 2.95.2 19991024 (release) as [

ELF 32-bit LSB executable 80386, dynamical

ly linked, stripped, no debug (SVR5 ABI)]

at systime Fri Jun 13 13:12:54 CET 2025 on
[UnixWare unixware 5 7.1.4 i386 x86at SCO
UNIX SVR5]

x86 Minix 32 clangV36 clang version 3.6 (branches/release 36 237
755) [i386-elf32-minix] as [ELF 32-bit LSB
executable (Minix), Intel 80386, wversion
1 (SYSV), dynamically linked, stripped] at
systime Fri Jun 13 13:01:43 CEST 2025 on
[Minix MinixVM.ESXsrv.net 3.4.0 (GENERIC)

i3861]

BMDFM C-83
2025 http://bmdfm.com



Appendix C

x86_Android_ 32 gccV49x gcc version 4.9.x 20150123 (prerelease) (G
CC) (cross-toolchain) (m32 i686-linux-andr
oid —D__ANDROID_API__=26) as [ELF 32-bit L
SB executable, Intel 80386, version 1 (SYS
V), dynamically linked (uses shared libs),

stripped] at systime Fri Jun 13 13:01:17
CEST 2025 on [Linux Linux64core 5.10.0-6-a
md64 #1 SMP Debian 5.10.28-1 (2021-04-09)
x86 64 GNU/Linux]

x86_Android 32 clangV503 clang version 5.0.300080 (based on LLVM 5.
0.300080) (cross-toolchain) (m32 i686-linu
x-android -D_ANDROID API =26) as [ELF 32
-bit LSB executable, Intel 80386, version

1 (SYSV), dynamically linked (uses shared

libs), stripped] at systime Fri Jun 13 13:
01:14 CEST 2025 on [Linux Linux64core 5.10
.0-6-amd64 #1 SMP Debian 5.10.28-1 (2021-0
4-09) x86 64 GNU/Linux]

x86-64_WindowsCygwin 64 gccV640 gcc version 6.4.0 (GCC) as [PE32+ executab
le (console) x86-64 (stripped to extermnal
PDB), for MS Windows] at systime Fri Jun 1
3 13:01:18 CEST 2025 on [CYGWIN NT-6.1 WIN
DOWS7VM 2.10.0(0.325/5/3) 2018-02-02 15:16
x86 64 Cygwin]

Xx86-64 Linux 64 gccV485 gcc version 4.8.5 20150623 (Red Hat 4.8.5-
4) (GCC) as [ELF 64-bit LSB executable, x8
6-64, version 1 (SYSV), dynamically linked

(uses shared libs), for GNU/Linux 2.6.32,

stripped] at systime Fri Jun 13 13:01:10
CEST 2025 on [Linux RedHatELS72VM 3.10.0-3
27.el7.x86 64 #1 SMP Thu Oct 29 17:29:29 E
DT 2015 x86 64]

x86-64 Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 64-bit LSB executable, x86-64,
version 1 (SYSV), dynamically linked (use
s shared 1libs), for GNU/Linux 3.2.0, strip
ped] at systime Fri Jun 13 13:01:19 CEST 2
025 on [Linux Linux64core 5.10.0-6-amd64 #
1l SMP Debian 5.10.28-1 (2021-04-09) x86 64

x86-64 Linux 64 clangV1101 Debian clang version 11.0.1-2 as [ELF 64-b
it LSB executable, x86-64, version 1 (SYSV
), dynamically linked (uses shared libs),
for GNU/Linux 3.2.0, stripped] at systime
Fri Jun 13 13:01:24 CEST 2025 on [Linux Li
nux64core 5.10.0-6-amd64 #1 SMP Debian 5.1
0.28-1 (2021-04-09) x86 64]

x86-64_Linux 64 iccVxe2019u3 icc version 19.0.3.199 (gcc version 4.8.5

compatibility) Intel(R) C Intel(R) 64 Comp
iler for applications running on Intel (R)

64, Version 19.0.3.199 Build 20190206 (Cop
yright (C) 1985-2019 Intel Corporation. Al
1 rights reserved.) as [ELF 64-bit LSB exe
cutable, x86-64, version 1 (SYSV), dynamic
ally linked (uses shared libs), for GNU/Li
nux 2.6.32, stripped] at systime Fri Jun 1
3 13:01:17 CEST 2025 on [Linux RedHatELS72
VM 3.10.0-327.e17.x86 64 #1 SMP Thu Oct 29

17:29:29 EDT 2015 x86 64]

C-84 BMDFM
http://bmdfm.com 2025



Appendix C

x86-64_FreeBSD 64 _gccV920 gcc version 9.2.0 (FreeBSD Ports Collectio
n) as [ELF 64-bit LSB executable, x86-64,

version 1 (FreeBSD), dynamically linked (u
ses shared libs), for FreeBSD 12.1, FreeBS
D-style, stripped] at systime Fri Jun 13 1
3:01:14 CEST 2025 on [FreeBSD FreeBSD12VM

12.1-RELEASE FreeBSD 12.1-RELEASE r354233

GENERIC amdé64]

x86-64 FreeBSD 64 clangV80l FreeBSD clang version 8.0.1 (tags/RELEASE
801/final 366581) (based on LLVM 8.0.1) as

[ELF 64-bit LSB executable, x86-64, versi
on 1 (FreeBSD), dynamically linked (uses s
hared libs), for FreeBSD 12.1, FreeBSD-sty
le, stripped] at systime Fri Jun 13 13:01:
13 CEST 2025 on [FreeBSD FreeBSD12VM 12.1-
RELEASE FreeBSD 12.1-RELEASE r354233 GENER
IC amdé64]

x86-64 OpenBSD 64 gccV830 gcc version 8.3.0 (GCC) as [ELF 64-bit LSB
executable, x86-64, version 1, dynamicall
y linked (uses shared 1libs), for OpenBSD 6
.6, stripped] at systime Fri Jun 13 13:01:
17 CEST 2025 on [OpenBSD OpenBSD66VM.ESXsr
v.net 6.6 (GENERIC.MP) #372: Sat Oct 12 10
:56:27 MDT 2019 deraadt@amdé64.openbsd.org:
/usr/src/sys/arch/amd64/compile/GENERIC.MP
amdé64]

x86-64 OpenBSD 64 clangV80l clang version 8.0.1 (tags/RELEASE 801/fina
1) (based on LLVM 8.0.1) as [ELF 64-bit LS
B executable, x86-64, version 1, dynamical
ly linked (uses shared libs), for OpenBSD
6.6, stripped] at systime Fri Jun 13 13:01
:24 CEST 2025 on [OpenBSD OpenBSD66VM.ESXs
rv.net 6.6 (GENERIC.MP) #372: Sat Oct 12 1
0:56:27 MDT 2019 deraadt@amdé64.openbsd.org
:/usr/src/sys/arch/amd64/compile/GENERIC.M
P amd64]

x86-64 NetBSD 64 gccV830 gcc version 8.3.0 (GCC) as [ELF 64-bit LSB
executable, x86-64, version 1 (SYSV), dyn
amically linked (uses shared libs), for Ne
tBSD 8.1, stripped] at systime Fri Jun 13

13:01:13 CEST 2025 on [NetBSD NetBSD81lVM.E
SXsrv.net 8.1 NetBSD 8.1 (GENERIC) #0: Fri
May 31 08:43:59 UTC 2019 mkrepro@mkrepro.
NetBSD.org:/usr/src/sys/arch/amd64/compile
/GENERIC amd64]

x86-64 NetBSD 64 clangV900 clang version 9.0.0 (tags/RELEASE 900/fina
1) (based on LLVM 9.0.0) as [ELF 64-bit LS
B executable, x86-64, version 1 (SYSV), dy
namically linked (uses shared 1libs), for N
etBSD 8.1, stripped] at systime Fri Jun 13
13:01:21 CEST 2025 on [NetBSD NetBSD81VM.
ESXsrv.net 8.1 NetBSD 8.1 (GENERIC) #0: Fr
i May 31 08:43:59 UTC 2019 mkrepro@mkrepro
.NetBSD.org:/usr/src/sys/arch/amdé64/compil
e/GENERIC amdé64]

BMDFM C-85
2025 http://bmdfm.com



Appendix C

x86-64 MacOS 64 clangV702 Apple LLVM version 7.0.2 (clang-700.1.81)
as [Mach-O 64-bit executable x86 64] at sy
stime Fri Jun 13 13:01:11 CEST 2025 on [Da
rwin MacIntel 14.5.0 Darwin Kernel Version

14.5.0: Tue Apr 11 16:12:42 PDT 2017; roo
t:xnu-2782.50.9.2.3~1/RELEASE X86 64 x86 6
4]

x86-64 MacOS 64 clangV1200 Apple clang version 12.0.0 (clang-1200.0.3
2.29) (Target: x86 64-apple-darwin20.0.0)
as [Mach-O 64-bit executable x86 64] at sy
stime Fri Jun 13 13:01:45 CEST 2025 on [Da
rwin MacOS1ll BigSur 20.0.0 Darwin Kernel V
ersion 20.0.0: Thu Jul 30 22:49:28 PDT 202
0; root:xnu-7195.0.0.141.5~1/RELEASE X86 6
4 x86 64]

x86-64 SunOS 64 ccV510 cc: Sun C 5.10 SunOS i386 Patch 142363-09
2012/08/15 as [ELF 64-bit LSB executable A
MD64 Version 1 [SSE2 SSE FXSR CMOV FPU], d
ynamically linked, stripped] at systime Fr
i Jun 13 13:01:17 CEST 2025 on [SunOS SunO
Sx86 5.11 11.1 i86pc i386 Solaris]

x86-64_SunOS 64 gccV343 gcc version 3.4.3 (csl-s0l210-3_4-branch+s
ol rpath) as [ELF 64-bit LSB executable AM
D64 Version 1, dynamically linked, strippe
d] at systime Fri Jun 13 13:01:02 CEST 202
5 on [SunOS SunOSx86 5.11 11.1 i86pc 1386
Solaris]

x86-64 Android 64 gccV49x gcc version 4.9.x 20150123 (prerelease) (G
CC) (cross-toolchain) (m64 x86_ 64-linux-an
droid -D__ANDROID API_ _=26) as [ELF 64-bit

LSB executable, x86-64, version 1 (SYSV),

dynamically linked (uses shared libs), st
ripped] at systime Fri Jun 13 13:01:18 CES
T 2025 on [Linux Linux64core 5.10.0-6-amdé6
4 #1 SMP Debian 5.10.28-1 (2021-04-09) x86
_ 64 GNU/Linux]

x86-64_Android 64 _clangV503 clang version 5.0.300080 (based on LLVM 5.
0.300080) (cross-toolchain) (m64 x86 64-1i
nux-android -D_ANDROID API =26) as [ELF
64-bit LSB executable, x86-64, version 1 (
SYSV), dynamically linked (uses shared lib
s), stripped] at systime Fri Jun 13 13:01:
17 CEST 2025 on [Linux Linuxé64core 5.10.0-
6-amd64 #1 SMP Debian 5.10.28-1 (2021-04-0
9) x86 64 GNU/Linux]

__________________________________ +_-_—__-_-_-_-_-_-_-__-_-_-_-_-_-_-_-_—_—_—_—

VAX Ultrix 32 _gccVv272 gcc version 2.7.2 as [VAX demand paged pur
e executable] at systime Fri Jun 13 13:07:
15 MET 2025 on [ULTRIX DECultrixVAX 4.5 0
VAX]

__________________________________ o o e e e e oo

Alpha Tru640SFl 64 ccV65303 Compag C V6.5-303 (dtk) on HP Tru64 UNIX V

5.1B (Rev. 2650) Compiler Driver V6.5-302
(dtk) cc Driver as [COFF format alpha dyna
mically linked, demand paged executable or
object module stripped - version 3.14-2]
at systime Fri Jun 13 13:01:28 CEST 2025 o
n [OSF1 DECtru64alpha V5.1 2650 alphal

C-86 BMDFM
http://bmdfm.com 2025



Appendix C

Alpha Tru640SFl1 64 gccV423 gcc version 4.2.3 (alpha-dec-osf5.1b) as [
COFF format alpha dynamically linked, dema
nd paged executable or object module strip
ped - version 3.14-2] at systime Fri Jun 1
3 13:01:47 CEST 2025 on [0OSF1l DECtrué64alph
a V5.1 2650 alphal

Alpha Linux 64 gccV424 gcc version 4.2.4 (Debian 4.2.4-6) as [ELF

64-bit LSB executable, Alpha (unofficial)
, version 1 (SYSV), dynamically linked (us
es shared libs), for GNU/Linux 2.6.9, stri
pped] at systime Fri Jun 13 13:01:45 CEST
2025 on [Linux AlphaLinux 2.6.26-2-alpha-g
eneric #1 Sun Mar 4 21:08:03 UTC 2012 alph
al

Alpha Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 64-bit LSB executable, Alpha (
unofficial), version 1 (SYSV), dynamically
linked (uses shared 1libs), for GNU/Linux
3.2.0, stripped] at systime Fri Jun 13 13:
03:41 CEST 2025 on [Linux AlphaServer 5.10
.0-8-alpha-smp #1 SMP Debian 5.10.46-1 (20
21-06-24) alphal

Alpha FreeBSD 64 gccV346 gcc version 3.4.6 [FreeBSD] 20060305 (Conf
igured with: FreeBSD/alpha system compiler
) as [ELF 64-bit LSB executable, Alpha (un
official), version 1 (FreeBSD), for FreeBS
D 6.4, dynamically linked (uses shared 1lib
s), FreeBSD-style, stripped] at systime Fr
i Jun 13 13:01:59 CEST 2025 on [FreeBSD Al
phaBSD 6.4-RELEASE FreeBSD 6.4-RELEASE #0:
Sun Nov 30 07:00:37 UTC 2008 root@dsl0.wb
net:/usr/obj/usr/src/sys/GENERIC alphal

Alpha OpenBSD 64 gccV421l gcc version 4.2.1 20070719 (OpenBSD/alpha

system compiler) as [ELF 64-bit LSB execut
able, Alpha (unofficial), version 1, dynam
ically linked (uses shared libs), for Open
BSD 6.6, stripped] at systime Fri Jun 13 1
3:02:22 CEST 2025 on [OpenBSD OpenBSD66alp
ha.ALPHApurgatory.net 6.6 (GENERIC.MP) #74
1: Sat Oct 12 05:34:08 MDT 2019 deraadte@al
pha.openbsd.org:/usr/src/sys/arch/alpha/co
mpile/GENERIC.MP alphal

IA-64 HP-UX 32 ccVa0628 cc: HP C/aC++ B3910B A.06.28 [Nov 21 2013]
as [ELF-32 executable object file - IA64]
at systime Fri Jun 13 13:04:18 MESZ 2025

on [HP-UX IA64hpux B.11.31 U ia64 28971902

01]

IA-64 HP-UX 32 gccV472 gcc version 4.7.2 (GCC) (ia64-hp-hpux11l.31
) as [ELF-32 executable object file - IA64
] at systime Fri Jun 13 13:01:21 MESZ 2025
on [HP-UX IA64hpux B.11.31 U ia64 2897190
2011

IA-64 HP-UX 64 ccVa0628 cc: HP C/aC++ B3910B A.06.28 [Nov 21 2013]
as [ELF-64 executable object file - IA64]
at systime Fri Jun 13 13:04:21 MESZ 2025

on [HP-UX IA64hpux B.11.31 U ia64 28971902

01]

BMDFM C-87
2025 http://bmdfm.com



Appendix C

IA-64 HP-UX 64 gccV472 gcc version 4.7.2 (GCC) (ia64-hp-hpux11l.31
) as [ELF-64 executable object file - IA64
] at systime Fri Jun 13 13:02:30 MESZ 2025
on [HP-UX IA64hpux B.11.31 U ia64 2897190
2011

IA-64 Linux 64 gccV41l2 gcc version 4.1.2 20080704 (Red Hat 4.1.2-
50) as [ELF 64-bit LSB executable, IA-64,
version 1 (SYSV), dynamically linked (uses

shared libs), for GNU/Linux 2.6.9, stripp
ed] at systime Fri Jun 13 13:01:24 CEST 20
25 on [Linux LinuxIA64 2.6.18-238.el5 #1 S
MP Sun Dec 19 14:23:48 EST 2010 ia64]

IA-64 Linux 64 gccV463 gcc version 4.6.3 (Debian 4.6.3-14) as [EL
F 64-bit LSB executable, IA-64, version 1
(8YSV), dynamically linked (uses shared 1li
bs), for GNU/Linux 2.6.26, stripped] at sy
stime Fri Jun 13 13:02:16 CEST 2025 on [Li
nux IA64-Linux 2.6.32-5-mckinley #1 SMP Tu
e May 13 19:10:46 UTC 2014 ia64]

IA-64 Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6+bl) as [ELF 64-bit LSB executable, IA-6
4, version 1 (S¥YSV), dynamically linked (u
ses shared 1libs), for GNU/Linux 3.2.18, st
ripped] at systime Fri Jun 13 13:02:04 CES
T 2025 on [Linux SR870BN4-Linux 5.10.0-8-m
ckinley #1 SMP Debian 5.10.46-1 (2021-06-2
4) ia64]

IA-64 FreeBSD 64 gccV42l gcc version 4.2.1 20070831 patched [FreeBS
D] (Configured with: FreeBSD/ia64 system c
ompiler) as [ELF 64-bit LSB executable, IA
-64, version 1 (FreeBSD), dynamically link
ed (uses shared libs), for FreeBSD 10.3, s
tripped] at systime Fri Jun 13 13:01:45 CE
ST 2025 on [FreeBSD ItaniumBSD 10.3-RELEAS
E FreeBSD 10.3-RELEASE #0 r297264: Fri Mar
25 04:43:22 UTC 2016 root@relengl.nyi.fre
ebsd.org:/usr/obj/ia64.ia64/usr/src/sys/GE
NERIC ia64]

XeonPhiMIC Linux 64 iccVxe2017u5 icc version 17.0.5 (gcc version 4.8.5 comp
atibility) Intel(R) C Intel(R) 64 Compiler
for applications running on Intel(R) 64,
Version 17.0.5.239 Build 20170817 (Copyrig
ht (C) 1985-2017 Intel Corporation. All ri
ghts reserved.) as [ELF 64-bit LSB executa
ble, Intel K10M, version 1 (SYSV), dynamic
ally linked (uses shared libs), for GNU/Li
nux 2.6.32, stripped] at systime Fri Jun 1
3 13:01:26 CEST 2025 on [Linux RedHatELS72
VM 3.10.0-327.e17.x86 64 #1 SMP Thu Oct 29

17:29:29 EDT 2015 x86 64]

XeonPhiMIC Linux 64 gccV470 gcc version 4.7.0 20110509 (experimental)
4.7.0 (GCC) (cross-toolchain) as [ELF 64-b
it LSB executable, Intel K1OM, version 1 (
SYSV), dynamically linked (uses shared lib
s), for GNU/Linux 2.6.32, stripped] at sys
time Fri Jun 13 13:01:15 CEST 2025 on [Lin
ux RedHatELS72VM 3.10.0-327.el7.x86 64 #1
SMP Thu Oct 29 17:29:29 EDT 2015 x86 64]

C-88 BMDFM
http://bmdfm.com 2025



Appendix C

MCSTelbrus Linux 32 1lccV120 lcc:1.20.17:Mar-3-2016:e2k-generic-linux (
gcc version 4.4.0 compatible) as [ELF 32-b
it LSB executable, MCST Elbrus, version 1

(SYSV), dynamically linked (uses shared 1li
bs), for GNU/Linux 2.6.33, stripped] at sy
stime Fri Jun 13 14:04:23 MSK 2025 on [Lin
ux debian4babayan-64 2.6.33-elbrus.033.3.4
2 #1 SMP Thu Apr 23 22:28:28 MSK 2015 e2kl]

MCSTelbrus Linux 32 lccV125 lcc:1.25.14:Feb-13-2021:e2k-v4-linux (gcc
version 7.3.0 compatible) as [ELF 32-bit L
SB executable, MCST Elbrus, version 1 (SYS
V), dynamically linked (uses shared libs),

for GNU/Linux 2.6.33, stripped] at systim
e Fri Jun 13 14:07:11 MSK 2025 on [Linux c
hassisOCF-babayan-elbrus804 5.4.0-1.9-e8c
#1 SMP Thu Oct 29 07:34:25 GMT 2020 e2k ES8
Cl]

MCSTelbrus Linux 64 lccV120 lcc:1.20.17:Mar-3-2016:e2k-generic-linux (
gcc version 4.4.0 compatible) as [ELF 64-b
it LSB executable, MCST Elbrus, version 1

(8YSV), dynamically linked (uses shared 1li
bs), for GNU/Linux 2.6.33, stripped] at sy
stime Fri Jun 13 14:03:27 MSK 2025 on [Lin
ux debiané4babayan-64 2.6.33-elbrus.033.3.4
2 #1 SMP Thu Apr 23 22:28:28 MSK 2015 e2k]

MCSTelbrus Linux 64 lccV125 lcc:1.25.14:Feb-13-2021:e2k-v4-1linux (gcc
version 7.3.0 compatible) as [ELF 64-bit L
SB executable, MCST Elbrus, version 1 (SYS
V), dynamically linked (uses shared libs),

for GNU/Linux 2.6.33, stripped] at systim
e Fri Jun 13 14:07:26 MSK 2025 on [Linux c
hassisOCF-babayan-elbrus804 5.4.0-1.9-e8c
#1 SMP Thu Oct 29 07:34:25 GMT 2020 e2k ES8
C]

PA-RISC HP-UX 32 ccVec0370 HP ANSI C / C++ B3910B C.03.70 (HP92453-01
B.11.11.16 HP C Compiler) as [PA-RISC1l.1
shared executable dynamically linked] at s
ystime Fri Jun 13 13:02:04 METDST 2025 on
[HP-UX c8k-HPUX B.11.23 U 9000/785 4042425

048]

PA-RISC HP-UX 32 gccV471 gcc version 4.7.1 (GCC) (hppal.l-hp-hpuxll
.11) as [PA-RISC1l.1 shared executable dyna
mically linked] at systime Fri Jun 13 13:0
2:08 METDST 2025 on [HP-UX c8k-HPUX B.1ll.2
3 U 9000/785 4042425048]

PA-RISC HP-UX 64 ccVc0370 HP ANSI C / C++ B3910B C.03.70 (HP92453-01
B.11.11.16 HP C Compiler) as [ELF-64 exec
utable object file - PA-RISC 2.0 (LP64) /
HPPA64 (PA-RISC2.0W)] at systime Fri Jun 1
3 13:02:01 METDST 2025 on [HP-UX c8k-HPUX
B.11.23 U 9000/785 4042425048]

PA-RISC HP-UX 64 gccV471 gcc version 4.7.1 (GCC) (hppa64-hp-hpuxll.
11) as [ELF-64 executable object file - PA
-RISC 2.0 (LP64) / HPPA64 (PA-RISC2.0W)] a
t systime Fri Jun 13 13:02:00 METDST 2025
on [HP-UX c8k-HPUX B.11.23 U 9000/785 4042
425048]

BMDFM C-89
2025 http://bmdfm.com



Appendix C

PA-RISC_Linux_ 32 gccV492 gcc version 4.9.2 (Debian 4.9.2-10+b2) as

[ELF 32-bit MSB executable, PA-RISC, versi
on 1 (GNU/Linux), dynamically linked (uses
shared libs), for GNU/Linux 2.6.32, strip
ped] at systime Fri Jun 13 13:02:00 CEST 2
025 on [Linux c8k-Linux 3.16.0-4-parisc64-
smp #1 SMP Debian 3.16.7-ckt4-3 (2015-02-0
3) parisce64]

PA-RISC Linux 32 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 32-bit MSB executable, PA-RISC
, version 1 (GNU/Linux), dynamically linke
d (uses shared libs), for GNU/Linux 3.2.0,
stripped] at systime Fri Jun 13 13:02:26
CEST 2025 on [Linux c8k-Linux 5.10.0-8-par
isc64 #1 SMP Debian 5.10.46-1 (2021-06-24)
parisc64]

SPARC_SunOS_32_ ccV510 cc: Sun C 5.10 SunOS_sparc Patch 141861-09
2012/08/15 as [ELF 32-bit MSB executable
SPARC32PLUS Version 1, V8+ Required, dynam
ically linked, stripped] at systime Fri Ju
n 13 13:02:33 CEST 2025 on [SunOS SunOS Ul
tra45 5.10 Generic 147147-26 sun4u sparc]

SPARC SunOS 32 gccV343 gcc version 3.4.3 (csl-so0l210-3 4-branch+s
ol rpath) as [ELF 32-bit MSB executable SP
ARC Version 1, dynamically linked, strippe
d] at systime Fri Jun 13 13:01:09 CEST 202
5 on [SunOS SunOS Ultra45 5.10 Generic 147
147-26 sun4u sparc]

SPARC_SunOS_64_ccV510 cc: Sun C 5.10 SunOS_sparc Patch 141861-09
2012/08/15 as [ELF 64-bit MSB executable
SPARCVY Version 1, dynamically linked, str
ipped] at systime Fri Jun 13 13:02:31 CEST
2025 on [SunOS SunOS Ultra45 5.10 Generic

~147147-26 sun4u sparc]

SPARC SunOS_64_gccV343 gcc version 3.4.3 (csl-s0l210-3_4-branch+s
ol rpath) as [ELF 64-bit MSB executable SP
ARCVY9 Version 1, dynamically linked, strip
ped] at systime Fri Jun 13 13:01:08 CEST 2
025 on [SunOS SunOS Ultra45 5.10 Generic 1
47147-26 sun4u sparc]

SPARC Linux 32 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 32-bit MSB executable, SPARC32
PLUS, V8+ Required, total store ordering,
version 1 (SYSV), dynamically linked (uses
shared libs), for GNU/Linux 3.2.0, stripp
ed] at systime Fri Jun 13 13:01:28 CEST 20
25 on [Linux LinuxSPARC64 5.10.0-8-sparcé64
-smp #1 SMP Debian 5.10.46-1 (2021-06-24)
sparcé64]

SPARC Linux 32 clangV1101l Debian clang version 11.0.1-2 as [ELF 32-b
it MSB executable, SPARC32PLUS, V8+ Requir
ed, total store ordering, version 1 (SYSV)
, dynamically linked (uses shared libs), £
or GNU/Linux 3.2.0, stripped] at systime F
ri Jun 13 13:01:28 CEST 2025 on [Linux Lin
uxSPARC64 5.10.0-8-sparc64-smp #1 SMP Debi
an 5.10.46-1 (2021-06-24) sparc64]

C-90 BMDFM
http://bmdfm.com 2025



Appendix C

SPARC Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 64-bit MSB executable, SPARC V
9, relaxed memory ordering, version 1 (SYS
V), dynamically linked (uses shared libs),

for GNU/Linux 3.2.0, stripped] at systime
Fri Jun 13 13:02:57 CEST 2025 on [Linux L
inuxSPARC64 5.10.0-8-sparc64-smp #1 SMP De
bian 5.10.46-1 (2021-06-24) sparc64]

SPARC Linux 64 clangV1101l Debian clang version 11.0.1-2 as [ELF 64-b
it MSB executable, SPARC V9, relaxed memor
y ordering, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 3
.2.0, stripped] at systime Fri Jun 13 13:0
3:49 CEST 2025 on [Linux LinuxSPARC64 5.10
.0-8-sparc64-smp #1 SMP Debian 5.10.46-1 (
2021-06-24) sparcé64]

SPARC FreeBSD_64_gccV42l gcc version 4.2.1 20070831 patched [FreeBS
D] (Configured with: FreeBSD/sparc64 syste
m compiler) as [ELF 64-bit MSB executable,

SPARC V9, relaxed memory ordering, versio
n 1 (FreeBSD), dynamically linked, FreeBSD
-style, for FreeBSD 12.1, stripped] at sys
time Fri Jun 13 13:05:34 CEST 2025 on [Fre
eBSD SparcBSD 12.1-RELEASE FreeBSD 12.1-RE
LEASE r354233 GENERIC sparc64]

SPARC OpenBSD_64_gccV830 gcc version 8.3.0 (GCC) as [ELF 64-bit MSB
executable, SPARC V9, version 1, dynamica
lly linked (uses shared libs), for OpenBSD
6.6, stripped] at systime Fri Jun 13 13:1
0:12 CEST 2025 on [OpenBSD OpenBSD66VM.ESX
srv.net 6.6 (GENERIC.MP) #86: Sat Oct 12 0
9:59:04 MDT 2019 deraadt@sparcé64.openbsd.o
rg:/usr/src/sys/arch/sparc64/compile/GENER
IC.MP sparcé64]

SPARC OpenBSD 64 clangV80l clang version 8.0.1 (tags/RELEASE 801/fina
1) (based on LLVM 8.0.1) as [ELF 64-bit MS
B executable, SPARC V9, version 1, dynamic
ally linked (uses shared libs), for OpenBS
D 6.6, stripped] at systime Fri Jun 13 13:
07:57 CEST 2025 on [OpenBSD OpenBSD66VM.ES
Xsrv.net 6.6 (GENERIC.MP) #86: Sat Oct 12

09:59:04 MDT 2019 deraadt@sparcé64.openbsd.
org:/usr/src/sys/arch/sparc64/compile/GENE
RIC.MP sparc64]

MIPS IRIX 32 ccV744m MIPSpro Compilers: Version 7.4.4m as [ELF

N32 MSB mips-4 dynamic executable MIPS - v
ersion 1] at systime Fri Jun 13 13:02:11 M
ET DST 2025 on [IRIX64 SGImipsIRIX 6.5 072
02013 IP35]

MIPS IRIX 32 gccV471 gcc version 4.7.1 (GCC) (mips-sgi-irix6.5)
as [ELF N32 MSB mips-4 dynamic executable
MIPS - version 1] at systime Fri Jun 13 1

3:01:42 MET DST 2025 on [IRIX64 SGImipsIRI

X 6.5 07202013 IP35]

MIPS IRIX 32 gccV471_TLS gcc version 4.7.1 (GCC) (mips-sgi-irix6.5)
as [ELF N32 MSB mips-4 dynamic executable
MIPS - version 1] at systime Fri Jun 13 1

3:01:41 MET DST 2025 on [IRIX64 SGImipsIRI

X 6.5 07202013 IP35]

BMDFM C-91
2025 http://bmdfm.com



Appendix C

MIPS IRIX 64 ccV744m MIPSpro Compilers: Version 7.4.4m as [ELF

64-bit MSB mips-4 dynamic executable MIPS

- version 1] at systime Fri Jun 13 13:02:1
1 MET DST 2025 on [IRIX64 SGImipsIRIX 6.5

07202013 IP35]

MIPS IRIX 64 _gccV47l gcc version 4.7.1 (GCC) (mips-sgi-irix6.5)

as [ELF 64-bit MSB mips-4 dynamic executa
ble MIPS - version 1] at systime Fri Jun 1
3 13:03:49 MET DST 2025 on [IRIX64 SGImips
IRIX 6.5 07202013 IP35]

MIPS IRIX 64 _gccV471 TLS gcc version 4.7.1 (GCC) (mips-sgi-irix6.5)

as [ELF 64-bit MSB mips-4 dynamic executa
ble MIPS - version 1] at systime Fri Jun 1
3 13:03:50 MET DST 2025 on [IRIX64 SGImips
IRIX 6.5 07202013 IP35]

MIPS Linux 32 gccV930 gcec version 9.3.0 (GCC) (cross-toolchain)

as [ELF 32-bit MSB executable, MIPS, MIPS-
I version 1 (SYSV), dynamically linked (us
es shared 1libs), for GNU/Linux 3.2.0, stri
pped] at systime Fri Jun 13 13:01:22 CEST

2025 on [Linux IBMpowerCHRP 5.10.0-8-power
pc64 #1 SMP Debian 5.10.46-1 (2021-06-24)

ppc64]

MIPS Linux 32 gccV830 sgi gcc version 8.3.0 (Gentoo 8.3.0 pl.0) as [
ELF 32-bit MSB executable, MIPS, N32 MIPS-
IV version 1 (SYSV), dynamically linked (u
ses shared libs), for GNU/Linux 3.2.0, str
ipped] at systime Fri Jun 13 13:07:48 CEST

2025 on [Linux SGIserver 4.12.0 #1 SMP Mo
n Feb 25 13:10:05 CET 2019 mips64 R12000 V
2.3 FPU V0.0 SGI Octane2]

MIPS Linux 64 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)
as [ELF 64-bit MSB executable, MIPS, MIPS-
III version 1 (SYSV), dynamically linked (
uses shared libs), for GNU/Linux 3.2.0, st
ripped] at systime Fri Jun 13 13:01:20 CES
T 2025 on [Linux IBMpowerCHRP 5.10.0-8-pow
erpc64 #1 SMP Debian 5.10.46-1 (2021-06-24
) ppc64]

MIPSel Linux 32 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)

as [ELF 32-bit LSB executable, MIPS, MIPS-
I version 1 (SYSV), dynamically linked (us
es shared 1libs), for GNU/Linux 3.2.0, stri
pped] at systime Fri Jun 13 13:01:22 CEST

2025 on [Linux IBMpowerCHRP 5.10.0-8-power
pc64 #1 SMP Debian 5.10.46-1 (2021-06-24)

ppc64]

MIPSel Linux 64 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)
as [ELF 64-bit LSB executable, MIPS, MIPS-
III version 1 (SYSV), dynamically linked (
uses shared libs), for GNU/Linux 3.2.0, st
ripped] at systime Fri Jun 13 13:01:19 CES
T 2025 on [Linux IBMpowerCHRP 5.10.0-8-pow
erpc64 #1 SMP Debian 5.10.46-1 (2021-06-24
) ppc64l]

C-92 BMDFM
http://bmdfm.com 2025



Appendix C

MIPSel Android 32 gccV49x gcc version 4.9.x 20150123 (prerelease) (G
CC) (cross-toolchain) (mips32 mipsel-linux
-android -D ANDROID API =26) as [ELF 32-
bit LSB executable, MIPS, MIPS32 wversion 1

(SYSV), dynamically linked (uses shared 1
ibs), stripped] at systime Fri Jun 13 13:0
1:18 CEST 2025 on [Linux Linux64core 5.10.
0-6-amd64 #1 SMP Debian 5.10.28-1 (2021-04
-09) x86 64 GNU/Linux]

MIPSel Android 32 clangV503 clang version 5.0.300080 (based on LLVM 5.
0.300080) (cross-toolchain) (mips32 mipsel
-linux-android -D_ANDROID API =26) as [E
LF 32-bit LSB executable, MIPS, MIPS32 ver
sion 1 (SYSV), dynamically linked (uses sh
ared libs), stripped] at systime Fri Jun 1
3 13:01:12 CEST 2025 on [Linux Linux64core

5.10.0-6-amd64 #1 SMP Debian 5.10.28-1 (2
021-04-09) x86 64 GNU/Linux]

MIPSel Android 64_gccV49x gcec version 4.9.x 20150123 (prerelease) (G
CC) (cross-toolchain) (mips64 mipsé64el-lin
ux-android -D_ANDROID API_=26) as [ELF 6
4-bit LSB executable, MIPS, version 1 (SY¥S
V), dynamically linked (uses shared libs),

stripped] at systime Fri Jun 13 13:01:19
CEST 2025 on [Linux Linux64core 5.10.0-6-a
md64 #1 SMP Debian 5.10.28-1 (2021-04-09)
x86 64 GNU/Linux]

MIPSel Android 64_clangV503 clang version 5.0.300080 (based on LLVM 5.
0.300080) (cross-toolchain) (mips64 mips64
el-linux-android -D__ANDROID API_ =26) as
[ELF 64-bit LSB executable, MIPS, version
1 (SYSV), dynamically linked (uses shared
libs), stripped] at systime Fri Jun 13 13:
01:13 CEST 2025 on [Linux Linux64core 5.10
.0-6-amd64 #1 SMP Debian 5.10.28-1 (2021-0
4-09) x86 64 GNU/Linux]

PowerPC AIX 32 x1cV1313 IBM XL C/C++ for AIX, V13.1.3 (5725-C72, 5
765-J07) Version: 13.01.0003.0000 as [exec

utable (RISC System/6000) or object module
] at systime Fri Jun 13 13:03:36 CEST 2025
on [AIX IBMpowerCHRP 1 7 00F68D574C00]

PowerPC AIX 32 gccV494 gcc version 4.9.4 (GCC) (powerpc-ibm-aix7.
1.0.0) as [executable (RISC System/6000) o
r object module] at systime Fri Jun 13 13:
02:38 CEST 2025 on [AIX IBMpowerCHRP 1 7 0
0F68D574C00]

PowerPC AIX 64 x1cV1313 IBM XL C/C++ for AIX, V13.1.3 (5725-C72, 5
765-J07) Version: 13.01.0003.0000 as [64-b
it XCOFF executable or object module] at s
ystime Fri Jun 13 13:02:32 CEST 2025 on [A
IX IBMpowerCHRP 1 7 00F68D574C00]

__________________________________ o o e e e e oo
PowerPC AIX 64 gccV494 gcc version 4.9.4 (GCC) (powerpc-ibm-aix7.
1.0.0) as [64-bit XCOFF executable or obje
ct module] at systime Fri Jun 13 13:02:27
CEST 2025 on [AIX IBMpowerCHRP 1 7 00F68D5
74C001]
BMDFM C-93

2025 http://bmdfm.com



Appendix C

PowerPC MacOS 32 gccV42l gcc version 4.2.1 (Apple Inc. build 5577)
as [Mach-O executable ppc] at systime Fri
Jun 13 13:01:35 CEST 2025 on [Darwin Power
G5MacOSX 9.8.0 Darwin Kernel Version 9.8.0
: Wed Jul 15 16:57:01 PDT 2009; root:xnu-1
228.15.4~1/RELEASE PPC Power Macintosh]

PowerPC MacOS 64 gccV42l gcc version 4.2.1 (Apple Inc. build 5577)
as [Mach-O 64-bit executable ppcé64] at sys
time Fri Jun 13 13:01:35 CEST 2025 on [Dar
win PowerG5MacOSX 9.8.0 Darwin Kernel Vers
ion 9.8.0: Wed Jul 15 16:57:01 PDT 2009; r
oot:xnu-1228.15.4~1/RELEASE_PPC Power Maci
ntosh]

PowerPC Linux 32 gccV492 gcc version 4.9.2 (Debian 4.9.2-10+deb8ul)
as [ELF 32-bit MSB executable, PowerPC or
cisco 4500, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux

2.6.32, stripped] at systime Fri Jun 13 13
:01:29 CEST 2025 on [Linux IBMpowerCHRP 3.

16.0-6-powerpc64 #1 SMP Debian 3.16.56-1+d

eb8ul (2018-05-08) ppc64]

PowerPC Linux 32 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1

-6) as [ELF 32-bit MSB executable, PowerPC
or cisco 4500, version 1 (SYSV), dynamica

lly linked (uses shared libs), for GNU/Lin

ux 3.2.0, stripped] at systime Fri Jun 13

13:01:15 CEST 2025 on [Linux IBMpowerCHRP

5.10.0-8-powerpc64 #1 SMP Debian 5.10.46-1
(2021-06-24) ppc64]

PowerPC Linux 32 clangV350 Debian clang version 3.5.0-10 (tags/RELEAS
E 350/final) (based on LLVM 3.5.0) as [ELF
32-bit MSB executable, PowerPC or cisco 4
500, version 1 (SYSV), dynamically linked

(uses shared libs), for GNU/Linux 2.6.32,

stripped] at systime Fri Jun 13 13:01:14 C
EST 2025 on [Linux IBMpowerCHRP 3.16.0-6-p
owerpc64 #1 SMP Debian 3.16.56-1+deb8ul (2
018-05-08) ppc64]

PowerPC Linux 32 clangV1101 Debian clang version 11.0.1-2 as [ELF 32-b
it MSB executable, PowerPC or cisco 4500,
version 1 (SYSV), dynamically linked (uses

shared libs), for GNU/Linux 3.2.0, stripp
ed] at systime Fri Jun 13 13:01:28 CEST 20
25 on [Linux IBMpowerCHRP 5.10.0-8-powerpc
64 #1 SMP Debian 5.10.46-1 (2021-06-24) pp
c64]

PowerPC Linux 64 gccV492 gcc version 4.9.2 (Debian 4.9.2-10+deb8ul)
as [ELF 64-bit MSB executable, 64-bit Pow
erPC or cisco 7500, version 1 (SYSV), dyna
mically linked (uses shared libs), for GNU
/Linux 2.6.32, stripped] at systime Fri Ju
n 13 13:01:27 CEST 2025 on [Linux IBMpower
CHRP 3.16.0-6-powerpc64 #1 SMP Debian 3.16
.56-1+deb8ul (2018-05-08) ppc64]

C-94 BMDFM
http://bmdfm.com 2025



Appendix C

PowerPC Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 64-bit MSB executable, 64-bit

PowerPC or cisco 7500, version 1 (SYSV), d
ynamically linked (uses shared libs), for

GNU/Linux 3.2.0, stripped] at systime Fri

Jun 13 13:01:15 CEST 2025 on [Linux IBMpow
erCHRP 5.10.0-8-powerpc64 #1 SMP Debian 5.
10.46-1 (2021-06-24) ppc64]

PowerPC Linux 64 clangV350 Debian clang version 3.5.0-10 (tags/RELEAS
E 350/final) (based on LLVM 3.5.0) as [ELF
64-bit MSB executable, 64-bit PowerPC or
cisco 7500, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2
.6.32, stripped] at systime Fri Jun 13 13:
01:14 CEST 2025 on [Linux IBMpowerCHRP 3.1
6.0-6-powerpc64 #1 SMP Debian 3.16.56-1+de

b8ul (2018-05-08) ppc64]

PowerPC Linux 64 clangV1101l Debian clang version 11.0.1-2 as [ELF 64-b
it MSB executable, 64-bit PowerPC or cisco
7500, version 1 (SYSV), dynamically linke
d (uses shared libs), for GNU/Linux 3.2.0,
stripped] at systime Fri Jun 13 13:01:27
CEST 2025 on [Linux IBMpowerCHRP 5.10.0-8-
powerpc64 #1 SMP Debian 5.10.46-1 (2021-06

-24) ppcé64]

PowerPC_FreeBSD 32 gccV920 gcc version 9.2.0 (FreeBSD Ports Collectio
n) as [ELF 32-bit MSB executable, PowerPC
or cisco 4500, version 1 (FreeBSD), dynami
cally linked (uses shared 1libs), FreeBSD-s
tyle, for FreeBSD 12.1, stripped] at systi
me Fri Jun 13 13:13:39 CEST 2025 on [FreeB
SD FreeBSD12VM 12.1-RELEASE FreeBSD 12.1-R
ELEASE r354233 GENERIC powerpc]

PowerPC FreeBSD 32 clangV801l clang version 8.0.1 (tags/RELEASE 801/fina
1) (based on LLVM 8.0.1) as [ELF 32-bit MS
B executable, PowerPC or cisco 4500, versi
on 1 (FreeBSD), dynamically linked (uses s
hared libs), FreeBSD-style, for FreeBSD 12
.1, stripped] at systime Fri Jun 13 13:27:
54 CEST 2025 on [FreeBSD FreeBSD12VM 12.1-
RELEASE FreeBSD 12.1-RELEASE r354233 GENER
IC powerpc]

PowerPC_FreeBSD 64 gccV920 gcc version 9.2.0 (FreeBSD Ports Collectio
n) as [ELF 64-bit MSB executable, 64-bit P
owerPC or cisco 7500, version 1 (FreeBSD),
dynamically linked (uses shared libs), Fr
eeBSD-style, for FreeBSD 12.1, stripped] a
t systime Fri Jun 13 13:14:35 CEST 2025 on
[FreeBSD FreeBSD12VM 12.1-RELEASE FreeBSD
12.1-RELEASE r354233 GENERIC powerpc]

PowerPC_FreeBSD 64 clangV801 clang version 8.0.1 (tags/RELEASE 801/fina
1) (based on LLVM 8.0.1) as [ELF 64-bit MS
B executable, 64-bit PowerPC or cisco 7500
, version 1 (FreeBSD), dynamically linked
(uses shared libs), FreeBSD-style, for Fre
eBSD 12.1, stripped] at systime Fri Jun 13
13:28:29 CEST 2025 on [FreeBSD FreeBSD12V
M 12.1-RELEASE FreeBSD 12.1-RELEASE r35423
3 GENERIC powerpcl

BMDFM C-95
2025 http://bmdfm.com



Appendix C

PowerPCle Linux 32 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)

as [ELF 32-bit LSB executable, PowerPC or

cisco 4500, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 3
.2.0, stripped] at systime Fri Jun 13 13:0
1:19 CEST 2025 on [Linux IBMpowerCHRP 5.10
.0-8-powerpc64 #1 SMP Debian 5.10.46-1 (20
21-06-24) ppc64]

PowerPCle Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 64-bit LSB executable, 64-bit
PowerPC or cisco 7500, version 1 (SYsv), d
ynamically linked (uses shared libs), for
GNU/Linux 3.10.0, stripped] at systime Fri

Jun 13 13:01:18 CEST 2025 on [Linux Linux
PPC64le 5.10.0-20-powerpc64le #1 SMP Debia
n 5.10.158-2 (2022-12-13) ppcé6élel]

PowerPCle Linux 64 clangV1101 Debian clang version 11.0.1-2 as [ELF 64-b
it LSB executable, 64-bit PowerPC or cisco
7500, version 1 (SYSV), dynamically linke
d (uses shared l1libs), for GNU/Linux 3.10.0
, stripped] at systime Fri Jun 13 13:01:29
CEST 2025 on [Linux LinuxPPC64le 5.10.0-2
0-powerpc64le #1 SMP Debian 5.10.158-2 (20
22-12-13) ppcé64lel

PowerPCle Linux 64 xlcV161l1l IBM XL C/C++ for Linux, V16.1.1 (Community
Edition) Version: 16.01.0001.0003 as [ELF
64-bit LSB executable, 64-bit PowerPC or

cisco 7500, version 1 (SYSV), dynamically

linked (uses shared libs), for GNU/Linux 3
.10.0, stripped] at systime Fri Jun 13 13:

01:42 CEST 2025 on [Linux LinuxPPC64le 5.1

0.0-20-powerpc64le #1 SMP Debian 5.10.158-

2 (2022-12-13) ppcbélel]

S390 z0S-USS 32 xlcV24 z/0S V2.4 XL C/C++ IBM Enterprise Metal C

for z/0S, V3.1 (Licensed Materials - Prope
rty of IBM 5650-Z0S Copyright IBM Corp. 20
04, 2017. US Government Users Restricted R
ights.) as [z/0S Unix executable (amod31)]
at systime Fri Jun 13 13:00:10 CEST 2025
on [0S/390 VS0l 29.00 05 8562]

S390 z0S-USS 64 xlcV24 z/0S V2.4 XL C/C++ IBM Enterprise Metal C

for z/0S, V3.1 (Licensed Materials - Prope
rty of IBM 5650-Z0S Copyright IBM Corp. 20
04, 2017. US Government Users Restricted R
ights.) as [z/0S Unix executable (amod64)]
at systime Fri Jun 13 13:00:28 CEST 2025
on [0S/390 VS0l 29.00 05 8562]

S390 Linux 32 gccV930 gcec version 9.3.0 (GCC) (cross-toolchain)
as [ELF 32-bit MSB executable, IBM S/390,
version 1 (SYSV), dynamically linked (uses

shared libs), for GNU/Linux 3.2.0, stripp
ed] at systime Fri Jun 13 13:01:18 CEST 20
25 on [Linux IBMpowerCHRP 5.10.0-8-powerpc
64 #1 SMP Debian 5.10.46-1 (2021-06-24) pp
c64]

C-96 BMDFM
http://bmdfm.com 2025



Appendix C

S390 Linux 64 gccV930 gcec version 9.3.0 (GCC) (cross-toolchain)
as [ELF 64-bit MSB executable, IBM S/390,
version 1 (SYSV), dynamically linked (uses

shared libs), for GNU/Linux 3.2.0, stripp
ed] at systime Fri Jun 13 13:01:18 CEST 20
25 on [Linux IBMpowerCHRP 5.10.0-8-powerpc
64 #1 SMP Debian 5.10.46-1 (2021-06-24) pp
c64]

S390 Linux 64 clangV381l clang version 3.8.1-24 (tags/RELEASE 381/f
inal) as [ELF 64-bit MSB executable, IBM S
/390, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 3.2.0,
stripped] at systime Fri Jun 13 13:08:23 C
EST 2025 on [Linux debian-QEMU 4.9.0-3-s39
0x #1 SMP Debian 4.9.30-2+deb9ul (2017-06-
18) s390x]

M68000 Linux 32 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)
as [ELF 32-bit MSB executable, Motorola mé6
8k, 68020, version 1 (SYSV), dynamically 1
inked (uses shared libs), for GNU/Linux 3.
2.0, stripped] at systime Fri Jun 13 13:01
:15 CEST 2025 on [Linux IBMpowerCHRP 5.10.
0-8-powerpc64 #1 SMP Debian 5.10.46-1 (202
1-06-24) ppcé64]

ARMeabi Linux 32 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) (cross-toolchain) as [ELF 32-bit LSB e
xecutable, ARM, EABI5 version 1 (SYSV), dy
namically linked (uses shared libs), for G
NU/Linux 3.2.0, stripped] at systime Fri J
un 13 13:01:25 CEST 2025 on [Linux Linux64
core 5.10.0-6-amd64 #1 SMP Debian 5.10.28-
1 (2021-04-09) x86 64]

ARMeabihf Linux 32 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) (cross-toolchain) as [ELF 32-bit LSB e
xecutable, ARM, EABI5 version 1 (SYSV), dy
namically linked (uses shared libs), for G
NU/Linux 3.2.0, stripped] at systime Fri J
un 13 13:01:18 CEST 2025 on [Linux Linux64
core 5.10.0-6-amd64 #1 SMP Debian 5.10.28-
1 (2021-04-09) x86 64]

ARMeabihf Linux 32 clangV381l clang version 3.8.1-24 (tags/RELEASE 381/f
inal) as [ELF 32-bit LSB executable, ARM,
EABI5 version 1 (SYSV), dynamically linked

(uses shared libs), for GNU/Linux 3.2.0,
stripped] at systime Fri Jun 13 13:08:03 C
EST 2025 on [Linux debian-QEMU 4.9.0-3-arm
mp-lpae #1 SMP Debian 4.9.30-2+deb9ul (201
7-06-18) armv71l]

ARM Linux 64 gccV1021 gcc version 10.2.1 20210110 (Debian 10.2.1
-6) as [ELF 64-bit LSB executable, ARM aar
ch64, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 3.7.0,
stripped] at systime Fri Jun 13 13:02:21 C
EST 2025 on [Linux ARM64debian 5.10.0-8-ar
m64 #1 SMP Debian 5.10.46-1 (2021-06-24) a
arch64]

BMDFM C-97
2025 http://bmdfm.com



Appendix C

ARM Linux 64 clangV1101 Debian clang version 11.0.1-2 as [ELF 64-b
it LSB executable, ARM aarch64, version 1
(8YSV), dynamically linked (uses shared 1li
bs), for GNU/Linux 3.7.0, stripped] at sys
time Fri Jun 13 13:02:17 CEST 2025 on [Lin
ux ARM64debian 5.10.0-8-arm64 #1 SMP Debia
n 5.10.46-1 (2021-06-24) aarché64]

ARM FreeBSD_64_gccV920 gcc version 9.2.0 (FreeBSD Ports Collectio
n) as [ELF 64-bit LSB executable, ARM aarc
h64, version 1 (SYSV), dynamically linked,

(uses shared libs), for FreeBSD 12.1, Fre
eBSD-style, stripped] at systime Fri Jun 1
3 13:07:27 CEST 2025 on [FreeBSD FreeBSD12
VM 12.1-RELEASE FreeBSD 12.1-RELEASE r3542
33 GENERIC armé64]

ARM FreeBSD 64 clangV8o0l FreeBSD clang version 8.0.1 (tags/RELEASE
801/final 366581) (based on LLVM 8.0.1) as
[ELF 64-bit LSB executable, ARM aarché64,
version 1 (SYSV), dynamically linked, (use
s shared libs), for FreeBSD 12.1, FreeBSD-
style, stripped] at systime Fri Jun 13 13:
06:53 CEST 2025 on [FreeBSD FreeBSD12VM 12
.1-RELEASE FreeBSD 12.1-RELEASE r354233 GE

NERIC arm64]

ARM Android 32 gccV49x gcc version 4.9.x 20150123 (prerelease) (G
CC) (cross-toolchain) (arm arm-linux-andro
ideabi -D_ANDROID API _=26) as [ELF 32-bi
t LSB executable, ARM, EABI5 version 1 (SY
SV), dynamically linked (uses shared libs)
, stripped] at systime Fri Jun 13 13:01:21
CEST 2025 on [Linux Linux64core 5.10.0-6-
amd64 #1 SMP Debian 5.10.28-1 (2021-04-09)
x86 64 GNU/Linux]

ARM Android 32 clangV503 clang version 5.0.300080 (based on LLVM 5.
0.300080) (cross-toolchain) (arm arm-linux
-androideabi -D_ANDROID API_ =26) as [ELF
32-bit LSB executable, ARM, EABI5 version
1 (SYSV), dynamically linked (uses shared
libs), stripped] at systime Fri Jun 13 13
:01:13 CEST 2025 on [Linux Linux64core 5.1
0.0-6-amd64 #1 SMP Debian 5.10.28-1 (2021-
04-09) x86 64 GNU/Linux]

ARM Android_64_gccV49x gcc version 4.9.x 20150123 (prerelease) (G
CC) (cross-toolchain) (arm64 aarch64-linux
-android -D__ANDROID API_ =26) as [ELF 64-
bit LSB executable, ARM aarché64, version 1

(SYSV), dynamically linked (uses shared 1
ibs), stripped] at systime Fri Jun 13 13:0
1:20 CEST 2025 on [Linux Linux64core 5.10.
0-6-amd64 #1 SMP Debian 5.10.28-1 (2021-04
-09) x86 64 GNU/Linux]

ARM Android 64 clangV503 clang version 5.0.300080 (based on LLVM 5.
0.300080) (cross-toolchain) (arm64 aarché64
-linux-android -D_ANDROID API_=26) as [E
LF 64-bit LSB executable, ARM aarché64, ver
sion 1 (SYSV), dynamically linked (uses sh
ared libs), stripped] at systime Fri Jun 1
3 13:01:15 CEST 2025 on [Linux Linuxé64core

5.10.0-6-amd64 #1 SMP Debian 5.10.28-1 (2
021-04-09) x86 64 GNU/Linux]

C-98 BMDFM
http://bmdfm.com 2025



Appendix C

ARM MacOS_64_ clangV1200 Apple clang version 12.0.0 (clang-1200.0.3
2.29) (Target: arm64-apple-darwin20.0.0) a
s [Mach-O 64-bit executable arm64] at syst
ime Fri Jun 13 13:02:22 CEST 2025 on [Darw
in MacOS1ll BigSur 20.0.0 Darwin Kernel Ver
sion 20.0.0: Thu Jul 30 22:49:28 PDT 2020;
root:xnu-7195.0.0.141.5~1/RELEASE X86 64
x86 64]

ARMe MacOS 64 clangV1200 Apple clang version 12.0.0 (clang-1200.0.3
2.29) (Target: armé64e-apple-darwin20.0.0)
as [Mach-O 64-bit executable armé64e] at sy
stime Fri Jun 13 13:01:57 CEST 2025 on [Da
rwin MacOS1ll BigSur 20.0.0 Darwin Kernel V
ersion 20.0.0: Thu Jul 30 22:49:28 PDT 202
0; root:xnu-7195.0.0.141.5~1/RELEASE X86 6
4 x86 64]

ARMbe Linux 64 gccV930 gcec version 9.3.0 (GCC) (cross-toolchain)

as [ELF 64-bit MSB executable, ARM aarché64
, version 1 (SYSV), dynamically linked (us
es shared 1libs), for GNU/Linux 3.7.0, stri
pped] at systime Fri Jun 13 13:01:23 CEST

2025 on [Linux IBMpowerCHRP 5.10.0-8-power
pc64 #1 SMP Debian 5.10.46-1 (2021-06-24)

ppc64]

RISCV Linux 32 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)
as [ELF 32-bit LSB executable, UCB RISC-V,
version 1 (SYSV), dynamically linked (use
s shared 1libs), for GNU/Linux 5.4.0, strip
ped] at systime Fri Jun 13 13:01:17 CEST 2
025 on [Linux IBMpowerCHRP 5.10.0-8-powerp
c64 #1 SMP Debian 5.10.46-1 (2021-06-24) p
pc64]

RISCV Linux 64 gccV930 gcc version 9.3.0 (GCC) (cross-toolchain)

as [ELF 64-bit LSB executable, UCB RISC-V,
version 1 (SYSV), dynamically linked (use
s shared libs), for GNU/Linux 4.15.0, stri
pped] at systime Fri Jun 13 13:01:17 CEST

2025 on [Linux IBMpowerCHRP 5.10.0-8-power
pc64 #1 SMP Debian 5.10.46-1 (2021-06-24)

ppc64]

LoongArch Linux 64 gccV1300 gcc version 13.0.0 20221018 (experimental)
(GCC) (cross-toolchain) as [ELF 64-bit LS
B executable, LoongArch, version 1 (SYSV),
dynamically linked (uses shared libs), fo
r GNU/Linux 5.19.0, stripped] at systime F
ri Jun 13 13:01:17 CEST 2025 on [Linux Lin
ux64core 5.10.0-6-amd64 #1 SMP Debian 5.10
.28-1 (2021-04-09) x86 64]
=== ==============================+4==S==========================================

BMDFM C-99
2025 http://bmdfm.com



Appendix C

This page is intentionally left blank.
This is the last page of the document.

C-100 BMDFM
http://bmdfm.com 2025



